MoTIF: Learning Motion Trajectories with Local Implicit Neural Functions for Continuous Space-Time Video Super-Resolution

Yi Hsin Chen*, Si Cun Chen, Yen Yu Lin, Wen Hsiao Peng

*此作品的通信作者

研究成果: Conference contribution同行評審

2 引文 斯高帕斯(Scopus)

摘要

This work addresses continuous space-time video super-resolution (C-STVSR) that aims to up-scale an input video both spatially and temporally by any scaling factors. One key challenge of C-STVSR is to propagate information temporally among the input video frames. To this end, we introduce a space-time local implicit neural function. It has the striking feature of learning forward motion for a continuum of pixels. We motivate the use of forward motion from the perspective of learning individual motion trajectories, as opposed to learning a mixture of motion trajectories with backward motion. To ease motion interpolation, we encode sparsely sampled forward motion extracted from the input video as the contextual input. Along with a reliability-aware splatting and decoding scheme, our framework, termed MoTIF, achieves the state-of-the-art performance on C-STVSR. The source code of MoTIF is available at https://github.com/sichun233746/MoTIF.

原文English
主出版物標題Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
發行者Institute of Electrical and Electronics Engineers Inc.
頁面23074-23084
頁數11
ISBN(電子)9798350307184
DOIs
出版狀態Published - 2023
事件2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
持續時間: 2 10月 20236 10月 2023

出版系列

名字Proceedings of the IEEE International Conference on Computer Vision
ISSN(列印)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
國家/地區France
城市Paris
期間2/10/236/10/23

指紋

深入研究「MoTIF: Learning Motion Trajectories with Local Implicit Neural Functions for Continuous Space-Time Video Super-Resolution」主題。共同形成了獨特的指紋。

引用此