Modeling the anchor effect for estimating performance metrics of a MEMS Pirani gauge

Manu Garg, Sushil Kumar, Dhairya S. Arya, Mujeeb Yousuf, Yi Chiu, Pushpapraj Singh

研究成果: Conference contribution同行評審

1 引文 斯高帕斯(Scopus)

摘要

Accurate prediction of theoretical limits is critical in MEMS Pirani gauge where the gauge output translates into the primary sensor calibration. In particular, the solid conduction loss (Qs) which determines the detection limit and constitutes a major chunk of total power consumption. Herein, we present a theoretical framework that accurately quantifies the Qs by incorporating an anchor effect. Finite element model (FEM) simulations realize the temperature profile and highlight the effect of anchor in modifying the effective thermal conductivity (keff) and hence Qs. A microbridge type Pirani gauge is fabricated, and the gauge successfully measures the vacuum from 30 Pa to 105 Pa. Theoretical estimations are verified with the measured data and a 37% reduction in Qs error is achieved by incorporating the anchor effect.

原文English
主出版物標題2022 IEEE Sensors, SENSORS 2022 - Conference Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665484640
DOIs
出版狀態Published - 2022
事件2022 IEEE Sensors Conference, SENSORS 2022 - Dallas, 美國
持續時間: 30 10月 20222 11月 2022

出版系列

名字Proceedings of IEEE Sensors
2022-October
ISSN(列印)1930-0395
ISSN(電子)2168-9229

Conference

Conference2022 IEEE Sensors Conference, SENSORS 2022
國家/地區美國
城市Dallas
期間30/10/222/11/22

指紋

深入研究「Modeling the anchor effect for estimating performance metrics of a MEMS Pirani gauge」主題。共同形成了獨特的指紋。

引用此