TY - GEN
T1 - Modeling of Cu-Cu Thermal Compression Bonding
AU - Shie, Kai Cheng
AU - Tran, Dinh Phuc
AU - Gusak, A. M.
AU - Tu, King-Ning
AU - Liu, Hung Che
AU - Chen, Chih
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - A simple bonding model is proposed to correlate the bonding time with some parameters such as surface roughness, temperature, pressure, and grain boundary diffusivity. The theoretical bonding time is defined as the time required for the bonding area to reach 95% of the surface area. Cu-Cu direct bonding is accomplished through the surface creep mechanism, which are divided into four stages, surface contact and plastic deformation, isolated void and grain boundary formation, interfacial void ripening, and interface elimination by grain growth. In this study, we established a surface creep model for the second bonding stage. The driving force is a pressure gradient, which triggers Cu atoms to fill voids at the bonding interface via grain boundary and surface diffusion. This is driven by the release of Gibbs free energy in the system. We took the critical parameters, including surface roughness, bonding temperature, and pressure into account of the model. Using such a kinetic model, we are able to estimate the theoretical bonding time as functions of surface roughness, grain boundary diffusivity, temperature, and pressure. The results indicate that surface roughness and orientation play critical roles on the bonding time. The theoretic bonding time is estimated as 104 s for the Cu films with a surface roughness of 10 nm bonded at 200 °C and 0.5 MPa. As the surface roughness is reduced to 1.0 nm, a bonding time of 10 s is predicted.
AB - A simple bonding model is proposed to correlate the bonding time with some parameters such as surface roughness, temperature, pressure, and grain boundary diffusivity. The theoretical bonding time is defined as the time required for the bonding area to reach 95% of the surface area. Cu-Cu direct bonding is accomplished through the surface creep mechanism, which are divided into four stages, surface contact and plastic deformation, isolated void and grain boundary formation, interfacial void ripening, and interface elimination by grain growth. In this study, we established a surface creep model for the second bonding stage. The driving force is a pressure gradient, which triggers Cu atoms to fill voids at the bonding interface via grain boundary and surface diffusion. This is driven by the release of Gibbs free energy in the system. We took the critical parameters, including surface roughness, bonding temperature, and pressure into account of the model. Using such a kinetic model, we are able to estimate the theoretical bonding time as functions of surface roughness, grain boundary diffusivity, temperature, and pressure. The results indicate that surface roughness and orientation play critical roles on the bonding time. The theoretic bonding time is estimated as 104 s for the Cu films with a surface roughness of 10 nm bonded at 200 °C and 0.5 MPa. As the surface roughness is reduced to 1.0 nm, a bonding time of 10 s is predicted.
KW - copper-copper bonding
KW - diffusion
KW - kinetic modeling
KW - thermal compression
KW - void formation
UR - http://www.scopus.com/inward/record.url?scp=85134637821&partnerID=8YFLogxK
U2 - 10.1109/ECTC51906.2022.00347
DO - 10.1109/ECTC51906.2022.00347
M3 - Conference contribution
AN - SCOPUS:85134637821
T3 - Proceedings - Electronic Components and Technology Conference
SP - 2201
EP - 2205
BT - Proceedings - IEEE 72nd Electronic Components and Technology Conference, ECTC 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 72nd IEEE Electronic Components and Technology Conference, ECTC 2022
Y2 - 31 May 2022 through 3 June 2022
ER -