Mobility profiling using Markov chains for tree-based object tracking in wireless sensor networks

Li-Hsing Yen*, Chia Cheng Yang

*此作品的通信作者

研究成果: Conference contribution同行評審

14 引文 斯高帕斯(Scopus)

摘要

Object tracking in wireless sensor networks is to track moving objects by scattered sensors. These sensors are typically organized into a tree to deliver report messages upon detecting object's move. Existing tree construction algorithms all require a mobility profile that is obtained based on historical statistics. In this paper, we propose an analytic estimate of such mobility profile based on Markov-chain model. This estimate replaces otherwise experimental process that collects statistical data. Simulation results confirm the effectiveness of the proposed approach.

原文English
主出版物標題Proceedings - Thirteenth International Symposium on Temporal Representation and Reasoning, TIME 2006
頁面220-225
頁數6
DOIs
出版狀態Published - 15 12月 2006
事件IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing - Taichung, 台灣
持續時間: 5 6月 20067 6月 2006

出版系列

名字Proceedings - IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing
2006 I

Conference

ConferenceIEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing
國家/地區台灣
城市Taichung
期間5/06/067/06/06

指紋

深入研究「Mobility profiling using Markov chains for tree-based object tracking in wireless sensor networks」主題。共同形成了獨特的指紋。

引用此