Mobility enhancement for high stability tungsten-doped indium-zinc oxide thin film transistors with a channel passivation layer

Dun Bao Ruan, Po-Tsun Liu*, Yu Chuan Chiu, Po Yi Kuo, Min Chin Yu, Kai Jhih Gan, Ta Chun Chien, Simon M. Sze

*此作品的通信作者

研究成果: Article同行評審

28 引文 斯高帕斯(Scopus)

摘要

This study investigates the electrical characteristics and physical analysis for an amorphous tungsten-doped indium-zinc oxide thin film transistor with different backchannel passivation layers (BPLs), which were deposited by an ion bombardment-free process. A 10 times increase in mobility was observed and attributed to the generation of donor-like oxygen vacancies at the backchannel, which is induced by the oxygen desorption and Gibbs free energy of the BPL material. The mechanism was well studied by XPS analysis. On the other hand, a HfO2 gate insulator was applied for the InWZnO TFT device to control the extremely conductive channel and adjust the negative threshold voltage. With both a HfO2 gate insulator and a suitable BPL, the InWZnO TFT device exhibits good electrical characteristics and a remarkable lifetime when exposed to the ambient air.

原文English
頁(從 - 到)6925-6930
頁數6
期刊RSC Advances
8
發行號13
DOIs
出版狀態Published - 2018

指紋

深入研究「Mobility enhancement for high stability tungsten-doped indium-zinc oxide thin film transistors with a channel passivation layer」主題。共同形成了獨特的指紋。

引用此