跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Mitigate the Negative TL using Adaptive Thresholding for Fault Diagnosis
Pavan Kumar Mp,
Kun Chih Jimmy Chen
電子研究所
研究成果
:
Conference contribution
›
同行評審
2
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Mitigate the Negative TL using Adaptive Thresholding for Fault Diagnosis」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Adaptive Thresholding
100%
Amount of Training
33%
Batch Means
33%
Catastrophic Forgetting
66%
Data-centric
33%
Deep Learning
33%
Deep Learning Model
33%
Deep Model
33%
Environmental Conditions
33%
Fault Diagnosis
100%
Fourth Industrial Revolution
33%
Health Assessment
33%
Health Management
66%
Health Technology Management
33%
Inductive Transfer
33%
Industrial Systems
33%
Input-oriented
33%
Labeled Data
33%
Mechanical Equipment
33%
Mini
33%
Negative Transfer
66%
Performance Enhancement
33%
Pre-Trained Parameters
33%
Prognostics Management
100%
Regularization Method
33%
Target Domain
33%
Training Data
33%
Computer Science
Deep Learning Method
50%
Deep Learning Model
50%
Enhance Performance
50%
Fault Diagnosis
100%
Generalizability
50%
Industrial System
50%
Regularization
100%
Training Data
50%
Social Sciences
Fourth Industrial Revolution
33%
Health Assessment
33%
Health Management
100%
Mechanical Equipment
33%
Technology Management
33%
Psychology
Health Assessment
100%
Learning Model
100%