跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Mitigate the Negative TL using Adaptive Thresholding for Fault Diagnosis
Pavan Kumar Mp,
Kun Chih Jimmy Chen
電子研究所
研究成果
:
Conference contribution
›
同行評審
2
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Mitigate the Negative TL using Adaptive Thresholding for Fault Diagnosis」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Fault Diagnosis
100%
Adaptive Thresholding
100%
Prognostics Management
100%
Health Management
66%
Negative Transfer
66%
Catastrophic Forgetting
66%
Health Assessment
33%
Input-oriented
33%
Mini
33%
Deep Learning
33%
Training Data
33%
Performance Enhancement
33%
Data-centric
33%
Environmental Conditions
33%
Regularization Method
33%
Fourth Industrial Revolution
33%
Amount of Training
33%
Target Domain
33%
Labeled Data
33%
Industrial Systems
33%
Deep Model
33%
Deep Learning Model
33%
Pre-Trained Parameters
33%
Mechanical Equipment
33%
Health Technology Management
33%
Inductive Transfer
33%
Batch Means
33%
Computer Science
Fault Diagnosis
100%
Regularization
100%
Training Data
50%
Enhance Performance
50%
Industrial System
50%
Generalizability
50%
Deep Learning Model
50%
Deep Learning Method
50%
Social Sciences
Health Management
100%
Technology Management
33%
Health Assessment
33%
Fourth Industrial Revolution
33%
Mechanical Equipment
33%
Psychology
Learning Model
100%
Health Assessment
100%