TY - GEN
T1 - Mimicking the Annotation Process for Recognizing the Micro Expressions
AU - Ruan, Bo Kai
AU - Lo, Ling
AU - Shuai, Hong Han
AU - Cheng, Wen-Huang
N1 - Publisher Copyright:
© 2022 ACM.
PY - 2022/10/10
Y1 - 2022/10/10
N2 - Micro-expression recognition (MER) has recently become a popular research topic due to its wide applications, e.g., movie rating and recognizing the neurological disorder. By virtue of deep learning techniques, the performance of MER has been significantly improved and reached unprecedented results. This paper proposes a novel architecture to mimic how the expressions are annotated. Specifically, during the annotation process in several datasets, the AU labels are first obtained with FACS, and the expression labels are then decided based on the combinations of the AU labels. Meanwhile, these AU labels describe either the eyes or mouth movements (mutually-exclusive). Following this idea, we design a dual-branch structure with a new augmentation method to separately capture the eyes and mouth features and teach the model what the general expressions should be. Moreover, to adaptively fuse the area features for different expressions, we propose Area Weighted Module to assign different weights to each region. Additionally, we set up an auxiliary task to align the AU similarity scores to help our model capture facial patterns further with AU labels. The proposed approach outperforms other state-of-the-art methods in terms of accuracy on the CASME II and SAMM datasets. Moreover, we provide a new visualization approach to show the relationship between the facial regions and AU features.
AB - Micro-expression recognition (MER) has recently become a popular research topic due to its wide applications, e.g., movie rating and recognizing the neurological disorder. By virtue of deep learning techniques, the performance of MER has been significantly improved and reached unprecedented results. This paper proposes a novel architecture to mimic how the expressions are annotated. Specifically, during the annotation process in several datasets, the AU labels are first obtained with FACS, and the expression labels are then decided based on the combinations of the AU labels. Meanwhile, these AU labels describe either the eyes or mouth movements (mutually-exclusive). Following this idea, we design a dual-branch structure with a new augmentation method to separately capture the eyes and mouth features and teach the model what the general expressions should be. Moreover, to adaptively fuse the area features for different expressions, we propose Area Weighted Module to assign different weights to each region. Additionally, we set up an auxiliary task to align the AU similarity scores to help our model capture facial patterns further with AU labels. The proposed approach outperforms other state-of-the-art methods in terms of accuracy on the CASME II and SAMM datasets. Moreover, we provide a new visualization approach to show the relationship between the facial regions and AU features.
KW - AU-feature learning
KW - micro-expression recognition
UR - http://www.scopus.com/inward/record.url?scp=85151146875&partnerID=8YFLogxK
U2 - 10.1145/3503161.3548185
DO - 10.1145/3503161.3548185
M3 - Conference contribution
AN - SCOPUS:85151146875
T3 - MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
SP - 228
EP - 236
BT - MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
PB - Association for Computing Machinery, Inc
T2 - 30th ACM International Conference on Multimedia, MM 2022
Y2 - 10 October 2022 through 14 October 2022
ER -