TY - JOUR
T1 - Microvascular Control Mechanism of the Plantar Foot in Response to Different Walking Speeds and Durations
T2 - Implication for the Prevention of Foot Ulcers
AU - Wu, Fu Lien
AU - Wang, Wendy T.
AU - Liao, Fuyuan
AU - Liu, Yang
AU - Li, Jiacong
AU - Jan, Yih Kuen
N1 - Publisher Copyright:
© The Author(s) 2020.
PY - 2021/12
Y1 - 2021/12
N2 - Physical activity has been recommended by the American Diabetes Association (ADA) as a preventive intervention of diabetes complications. However, there is no study investigating how microvascular control mechanism respond to different walking intensities in people with and without diabetes. The purpose of this study was to assess microvascular control mechanism of the plantar foot in response to various walking speeds and durations in 12 healthy people using spectral analysis of skin blood flow (SBF) oscillations. A 3×2 factorial design, including 3 speeds (3, 6, and 9 km/h) and 2 durations (10 and 20 minutes), was used in this study. Plantar SBF was measured using laser Doppler flowmetry over the first metatarsal head. Borg Rating of Perceived Exertion (RPE) scale and heart rate maximum were used to assess the walking intensity. Wavelet analysis was used to quantify regulations of metabolic (0.0095-0.02 Hz), neurogenic (0.02-0.05 Hz), myogenic (0.05-0.15 Hz), respiratory (0.15-0.4 Hz), and cardiac (0.4-2 Hz) controls. For 10-minute walking, walking at 9 km/h significantly increased the ratio of wavelet amplitudes of metabolic, neurogenic, myogenic, respiratory, and cardiac mechanisms compared with 3 km/h (P <.05). For 20-minute walking, walking at 6 km/h significantly increased the ratio of wavelet amplitudes of metabolic, myogenic, respiratory, and cardiac compared with 3 km/h (P <.05). RPE showed a significant interaction between the speed and duration factors (P <.01). This is the first study demonstrating that different walking speeds and durations caused different plantar microvascular regulations.
AB - Physical activity has been recommended by the American Diabetes Association (ADA) as a preventive intervention of diabetes complications. However, there is no study investigating how microvascular control mechanism respond to different walking intensities in people with and without diabetes. The purpose of this study was to assess microvascular control mechanism of the plantar foot in response to various walking speeds and durations in 12 healthy people using spectral analysis of skin blood flow (SBF) oscillations. A 3×2 factorial design, including 3 speeds (3, 6, and 9 km/h) and 2 durations (10 and 20 minutes), was used in this study. Plantar SBF was measured using laser Doppler flowmetry over the first metatarsal head. Borg Rating of Perceived Exertion (RPE) scale and heart rate maximum were used to assess the walking intensity. Wavelet analysis was used to quantify regulations of metabolic (0.0095-0.02 Hz), neurogenic (0.02-0.05 Hz), myogenic (0.05-0.15 Hz), respiratory (0.15-0.4 Hz), and cardiac (0.4-2 Hz) controls. For 10-minute walking, walking at 9 km/h significantly increased the ratio of wavelet amplitudes of metabolic, neurogenic, myogenic, respiratory, and cardiac mechanisms compared with 3 km/h (P <.05). For 20-minute walking, walking at 6 km/h significantly increased the ratio of wavelet amplitudes of metabolic, myogenic, respiratory, and cardiac compared with 3 km/h (P <.05). RPE showed a significant interaction between the speed and duration factors (P <.01). This is the first study demonstrating that different walking speeds and durations caused different plantar microvascular regulations.
KW - diabetic foot ulcer prevention
KW - laser Doppler
KW - skin blood flow
KW - walking duration
KW - walking speed
KW - wavelet analysis
UR - http://www.scopus.com/inward/record.url?scp=85084481239&partnerID=8YFLogxK
U2 - 10.1177/1534734620915360
DO - 10.1177/1534734620915360
M3 - Article
C2 - 32326799
AN - SCOPUS:85084481239
SN - 1534-7346
VL - 20
SP - 327
EP - 336
JO - International Journal of Lower Extremity Wounds
JF - International Journal of Lower Extremity Wounds
IS - 4
ER -