TY - JOUR
T1 - Micro-Electrode-Dot-Array Digital Microfluidic Biochips
T2 - Technology, Design Automation, and Test Techniques
AU - Zhong, Zhanwei
AU - Li, Zipeng
AU - Chakrabarty, Krishnendu
AU - Ho, Tsung Yi
AU - Lee, Chen-Yi
N1 - Publisher Copyright:
© 2007-2012 IEEE.
PY - 2019/4
Y1 - 2019/4
N2 - Digital microfluidic biochips (DMFBs) are being increasingly used for DNA sequencing, point-of-care clinical diagnostics, and immunoassays. DMFBs based on a micro-electrode-dot-Array (MEDA) architecture have recently been proposed, and fundamental droplet manipulations, e.g., droplet mixing and splitting, have also been experimentally demonstrated on MEDA biochips. There can be thousands of microelectrodes on a single MEDA biochip, and the fine-grained control of nanoliter volumes of biochemical samples and reagents is also enabled by this technology. MEDA biochips offer the benefits of real-Time sensitivity, lower cost, easy system integration with CMOS modules, and full automation. This review paper first describes recent design tools for high-level synthesis and optimization of map bioassay protocols on a MEDA biochip. It then presents recent advances in scheduling of fluidic operations, placement of fluidic modules, droplet-size-Aware routing, adaptive error recovery, sample preparation, and various testing techniques. With the help of these tools, biochip users can concentrate on the development of nanoscale bioassays, leaving details of chip optimization and implementation to software tools.
AB - Digital microfluidic biochips (DMFBs) are being increasingly used for DNA sequencing, point-of-care clinical diagnostics, and immunoassays. DMFBs based on a micro-electrode-dot-Array (MEDA) architecture have recently been proposed, and fundamental droplet manipulations, e.g., droplet mixing and splitting, have also been experimentally demonstrated on MEDA biochips. There can be thousands of microelectrodes on a single MEDA biochip, and the fine-grained control of nanoliter volumes of biochemical samples and reagents is also enabled by this technology. MEDA biochips offer the benefits of real-Time sensitivity, lower cost, easy system integration with CMOS modules, and full automation. This review paper first describes recent design tools for high-level synthesis and optimization of map bioassay protocols on a MEDA biochip. It then presents recent advances in scheduling of fluidic operations, placement of fluidic modules, droplet-size-Aware routing, adaptive error recovery, sample preparation, and various testing techniques. With the help of these tools, biochip users can concentrate on the development of nanoscale bioassays, leaving details of chip optimization and implementation to software tools.
KW - Computer-Aided design (CAD)
KW - digital microfluidics
KW - error recovery
KW - micro-electrode-dot-Array
UR - http://www.scopus.com/inward/record.url?scp=85058887150&partnerID=8YFLogxK
U2 - 10.1109/TBCAS.2018.2886952
DO - 10.1109/TBCAS.2018.2886952
M3 - Article
C2 - 30571645
AN - SCOPUS:85058887150
SN - 1932-4545
VL - 13
SP - 292
EP - 313
JO - IEEE Transactions on Biomedical Circuits and Systems
JF - IEEE Transactions on Biomedical Circuits and Systems
IS - 2
M1 - 8576595
ER -