TY - JOUR
T1 - Mechanism and kinetics for ammonium perchlorate sublimation
T2 - A first-principles study
AU - Zhu, Rongshun
AU - Lin, Ming-Chang
PY - 2008/9/18
Y1 - 2008/9/18
N2 - We have studied for the first time the kinetics and mechanism for the sublimation/decomposition of NH4ClO4 by first-principles calculations, using a generalized gradient approximation with the plane-wave density functional theory. Supercells containing 4, 8, and 16 NH 4ClO4 units were used; the predicted enthalpic change for solid NH4ClO4 to gaseous NH3 and HClO 4 is 45.0 ± 1.5 kcal/mol. The calculated desorption activation energies for NH3, HClO4, and H3N⋯ HOClO3 molecular complexes, individually, from the relaxed surface are 45.3, 43.5, and 28.1 kcal/mol, respectively. The rate constant for the dominant sublimation process desorbing H3N⋯HOClO3 as a pair can be presented by ksub.= 6.53 × 1012 exp (-28.8 kcal/mol/RT) s-1, which is in reasonable agreement with available experimental data. Expectably, the decomposition of H 3N⋯HOClO3 (g) to NH3 (g) and HOClO 3 (g) is considerably faster, about 1 × 107 times greater than that for the sublimation process in the same temperature range. The rate constant for the gas-phase dissociation step can be expressed by 1.20 × 1015 exp (-14.6 kcal/mol/RT) sec-1. This study further confirms that the activation energy for the sublimation of an ammonium salt is significantly lower than the enthalpic change and that the molecular complex of acid and base sublimes concurrently as a pair.
AB - We have studied for the first time the kinetics and mechanism for the sublimation/decomposition of NH4ClO4 by first-principles calculations, using a generalized gradient approximation with the plane-wave density functional theory. Supercells containing 4, 8, and 16 NH 4ClO4 units were used; the predicted enthalpic change for solid NH4ClO4 to gaseous NH3 and HClO 4 is 45.0 ± 1.5 kcal/mol. The calculated desorption activation energies for NH3, HClO4, and H3N⋯ HOClO3 molecular complexes, individually, from the relaxed surface are 45.3, 43.5, and 28.1 kcal/mol, respectively. The rate constant for the dominant sublimation process desorbing H3N⋯HOClO3 as a pair can be presented by ksub.= 6.53 × 1012 exp (-28.8 kcal/mol/RT) s-1, which is in reasonable agreement with available experimental data. Expectably, the decomposition of H 3N⋯HOClO3 (g) to NH3 (g) and HOClO 3 (g) is considerably faster, about 1 × 107 times greater than that for the sublimation process in the same temperature range. The rate constant for the gas-phase dissociation step can be expressed by 1.20 × 1015 exp (-14.6 kcal/mol/RT) sec-1. This study further confirms that the activation energy for the sublimation of an ammonium salt is significantly lower than the enthalpic change and that the molecular complex of acid and base sublimes concurrently as a pair.
UR - http://www.scopus.com/inward/record.url?scp=53149151416&partnerID=8YFLogxK
U2 - 10.1021/jp803224x
DO - 10.1021/jp803224x
M3 - Article
AN - SCOPUS:53149151416
SN - 1932-7447
VL - 112
SP - 14481
EP - 14485
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 37
ER -