MD simulations of the central pore of ryanodine receptors and sequence comparison with 2B protein from coxsackie virus

Roman Schilling, Rainer H.A. Fink, Wolfgang B. Fischer*

*此作品的通信作者

研究成果: Article同行評審

8 引文 斯高帕斯(Scopus)

摘要

The regulation of intracellular Ca2 + triggers a multitude of vital processes in biological cells. Ca2 + permeable ryanodine receptors (RyRs) are the biggest known ion channels and play a key role in the regulation of intracellular calcium concentrations, particularly in muscle cells. In this study, we construct a computational model of the pore region of the skeletal RyR and perform molecular dynamics (MD) simulations. The dynamics and distribution of Ca2 + around the luminal pore entry of the RyR suggest that Ca2 + ions are channeled to the pore entry due to the arrangement of (acidic) amino acids at the extramembrane surface of the protein. This efficient mechanism of Ca2 + supply is thought to be part of the mechanism of Ca2 + conductance of RyRs. Viral myocarditis is predominantly caused by coxsackie viruses that induce the expression of the protein 2B which is known to affect intracellular Ca2 + homeostasis in infected cells. From our sequence comparison, it is hypothesized, that modulation of RyR could be due to replacement of its transmembrane domains (TMDs) by those domains of the viral channel forming protein 2B of coxsackie virus. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.

原文English
頁(從 - 到)1122-1131
頁數10
期刊Biochimica et Biophysica Acta - Biomembranes
1838
發行號4
DOIs
出版狀態Published - 4月 2014

指紋

深入研究「MD simulations of the central pore of ryanodine receptors and sequence comparison with 2B protein from coxsackie virus」主題。共同形成了獨特的指紋。

引用此