TY - JOUR
T1 - McI detection using kernel eigen-relative-power features of EEG signals
AU - Hsiao, Yu Tsung
AU - Tsai, Chia Fen
AU - Wu, Chien Te
AU - Trinh, Thanh Tung
AU - Lee, Chun Ying
AU - Liu, Yi Hung
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/7
Y1 - 2021/7
N2 - Classification between individuals with mild cognitive impairment (MCI) and healthy controls (HC) based on electroencephalography (EEG) has been considered a challenging task to be addressed for the purpose of its early detection. In this study, we proposed a novel EEG feature, the kernel eigen-relative-power (KERP) feature, for achieving high classification accuracy of MCI versus HC. First, we introduced the relative powers (RPs) between pairs of electrodes across 21 different subbands of 2-Hz width as the features, which have not yet been used in previous MCIHC classification studies. Next, the Fisher’s class separability criterion was applied to determine the best electrode pairs (five electrodes) as well as the frequency subbands for extracting the most sensitive RP features. The kernel principal component analysis (kernel PCA) algorithm was further performed to extract a few more discriminating nonlinear principal components from the optimal RPs, and these components form a KERP feature vector. Results carried out on 51 participants (24 MCI and 27 HC) show that the newly introduced subband RP feature showed superior classification performance to commonly used spectral power features, including the band power, single-electrode relative power, and also the RP based on the conventional frequency bands. A high leave-oneparticipant- out cross-validation (LOPO-CV) classification accuracy 86.27% was achieved by the RP feature, using a simple linear discriminant analysis (LDA) classifier. Moreover, with the same classifier, the proposed KERP further improved the accuracy to 88.24%. Finally, cascading the KERP feature to a nonlinear classifier, the support vector machine (SVM), yields a high MCI-HC classification accuracy of 90.20% (sensitivity = 87.50% and specificity = 92.59%). The proposed method demonstrated a high accuracy and a high usability (only five electrodes are required), and therefore, has great potential to further develop an EEG-based computer-aided diagnosis system that can be applied for the early detection of MCI.
AB - Classification between individuals with mild cognitive impairment (MCI) and healthy controls (HC) based on electroencephalography (EEG) has been considered a challenging task to be addressed for the purpose of its early detection. In this study, we proposed a novel EEG feature, the kernel eigen-relative-power (KERP) feature, for achieving high classification accuracy of MCI versus HC. First, we introduced the relative powers (RPs) between pairs of electrodes across 21 different subbands of 2-Hz width as the features, which have not yet been used in previous MCIHC classification studies. Next, the Fisher’s class separability criterion was applied to determine the best electrode pairs (five electrodes) as well as the frequency subbands for extracting the most sensitive RP features. The kernel principal component analysis (kernel PCA) algorithm was further performed to extract a few more discriminating nonlinear principal components from the optimal RPs, and these components form a KERP feature vector. Results carried out on 51 participants (24 MCI and 27 HC) show that the newly introduced subband RP feature showed superior classification performance to commonly used spectral power features, including the band power, single-electrode relative power, and also the RP based on the conventional frequency bands. A high leave-oneparticipant- out cross-validation (LOPO-CV) classification accuracy 86.27% was achieved by the RP feature, using a simple linear discriminant analysis (LDA) classifier. Moreover, with the same classifier, the proposed KERP further improved the accuracy to 88.24%. Finally, cascading the KERP feature to a nonlinear classifier, the support vector machine (SVM), yields a high MCI-HC classification accuracy of 90.20% (sensitivity = 87.50% and specificity = 92.59%). The proposed method demonstrated a high accuracy and a high usability (only five electrodes are required), and therefore, has great potential to further develop an EEG-based computer-aided diagnosis system that can be applied for the early detection of MCI.
KW - Brain–computer interface (BCI)
KW - Electroencephalography (EEG)
KW - Fisher’s class separability criterion
KW - Kernel principal component analysis
KW - Machine learning
KW - Mild cognitive impairment (MCI)
KW - Support vector machine
UR - http://www.scopus.com/inward/record.url?scp=85109941661&partnerID=8YFLogxK
U2 - 10.3390/act10070152
DO - 10.3390/act10070152
M3 - Article
AN - SCOPUS:85109941661
SN - 2076-0825
VL - 10
JO - Actuators
JF - Actuators
IS - 7
M1 - 152
ER -