TY - GEN
T1 - MAGIC
T2 - Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
AU - Kao, Wei Yu
AU - Yen, An Zi
N1 - Publisher Copyright:
© 2024 ELRA Language Resource Association: CC BY-NC 4.0.
PY - 2024
Y1 - 2024
N2 - Numerous studies have been conducted on automatic fact-checking, driven by its importance in real-world applications. However, two challenges persist: (1) extracting pivotal evidence from extensive documents, and (2) verifying claims across diverse domains. On one hand, current retrieval methods are limited in their ability to concisely retrieve evidence, which results in poor performance. On the other hand, retrieved evidence derived from different sources strains the generalization capabilities of classifiers. This paper explores the task of cross-domain fact-checking and presents the XClaimCheck dataset, which consists of claims from multiple domains. We propose a framework featuring a multi-argument generation technique. We leverage multi-argument generation to reconstruct concise evidence from large amounts of evidence retrieved from different sources. In addition, a self-refinement mechanism is introduced to confirm that the generated arguments are consistent with the content of the evidence. Experimental results show that our proposed framework is effective in identifying the veracity of out-of-domain claims, particularly those that are partially true or false.
AB - Numerous studies have been conducted on automatic fact-checking, driven by its importance in real-world applications. However, two challenges persist: (1) extracting pivotal evidence from extensive documents, and (2) verifying claims across diverse domains. On one hand, current retrieval methods are limited in their ability to concisely retrieve evidence, which results in poor performance. On the other hand, retrieved evidence derived from different sources strains the generalization capabilities of classifiers. This paper explores the task of cross-domain fact-checking and presents the XClaimCheck dataset, which consists of claims from multiple domains. We propose a framework featuring a multi-argument generation technique. We leverage multi-argument generation to reconstruct concise evidence from large amounts of evidence retrieved from different sources. In addition, a self-refinement mechanism is introduced to confirm that the generated arguments are consistent with the content of the evidence. Experimental results show that our proposed framework is effective in identifying the veracity of out-of-domain claims, particularly those that are partially true or false.
KW - Automatic Fact-Checking
KW - Domain Generalization
KW - Multi-Argument Generation
KW - Self-Refinement
UR - http://www.scopus.com/inward/record.url?scp=85195961698&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85195961698
T3 - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
SP - 10891
EP - 10902
BT - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
A2 - Calzolari, Nicoletta
A2 - Kan, Min-Yen
A2 - Hoste, Veronique
A2 - Lenci, Alessandro
A2 - Sakti, Sakriani
A2 - Xue, Nianwen
PB - European Language Resources Association (ELRA)
Y2 - 20 May 2024 through 25 May 2024
ER -