摘要
The prognosis in cases of pancreatic ductal adenocarcinoma (PDAC) with current treatment modalities is poor owing to the highly desmoplastic tumor microenvironment (TME). Herein, a β-glucans-functionalized zinc–doxorubicin nanoparticle system (βGlus-ZnD NPs) that can be orally administered, is developed for targeted PDAC therapy. Following oral administration in PDAC-bearing mice, βGlus-ZnD NPs actively target/transpass microfold cells, overcome the intestinal epithelial barrier, and then undergo subsequent phagocytosis by endogenous macrophages (βGlus-ZnD@Mϕ). As hitchhiking cellular vehicles, βGlus-ZnD@Mϕ transits through the intestinal lymphatic system and enters systemic circulation, ultimately accumulating in the tumor tissue as a result of the tumor-homing and “stealth” properties that are conferred by endogenous Mϕ. Meanwhile, the Mϕ that hitchhikes βGlus-ZnD NPs is activated to produce matrix metalloproteinases, destroying the desmoplastic stromal barrier, and differentiates toward the M1-like phenotype, modulating the TME and recruiting effector T cells, ultimately inducing apoptosis of the tumor cells. The combination of βGlus-ZnD@Mϕ and immune checkpoint blockade effectively inhibits the growth of the primary tumor and suppresses the development of metastasis. It thus represents an appealing approach to targeted PDAC therapy.
原文 | English |
---|---|
文章編號 | 2304735 |
期刊 | Advanced Materials |
卷 | 35 |
發行號 | 40 |
DOIs | |
出版狀態 | Published - 5 10月 2023 |