跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Machine learning for multi-class protein fold classification based on neural networks with feature gating
Chuen Der Huang
*
,
I. Fang Chung
, Nikhil Ranjan Pal, Chin Teng Lin
*
此作品的通信作者
生物醫學資訊研究所
研究成果
:
Article
›
同行評審
5
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Machine learning for multi-class protein fold classification based on neural networks with feature gating」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Neural Network
100%
Machine Learning
100%
Multi-class
100%
Gated Network
100%
Classification Basis
100%
Unfolding Method
100%
Protein Fold Classification
100%
Classification System
50%
Feature Extraction
50%
Number of Features
50%
Computation Time
50%
Test Accuracy
50%
Hierarchical Architecture
50%
Input Nodes
50%
Good Characteristics
50%
Selected Features
50%
Feature Select
50%
Neural Network Classifier
50%
Bioinformatics Methods
50%
Tool-Being
50%
Hierarchical Machine Learning
50%
Machine Learning Architectures
50%
Computer Science
Neural Network
100%
Gating Network
100%
Folding Process
100%
Machine Learning
100%
Learning System
100%
Hierarchical Architecture
50%
Computation Time
50%
Characteristic Feature
50%
Feature Extraction
50%
Bioinformatics
50%
Biochemistry, Genetics and Molecular Biology
Protein Fold Class
100%
Feature Extraction
100%
Bioinformatics
100%
Neuroscience
Neural Network
100%
Protein Tertiary Structure
100%