Machine Learning Detection for Financial Statement Fraud

Ting Kai Hwang*, Wei Chun Chen, Wan Chi Chiang, Yung Ming Li

*此作品的通信作者

研究成果: Conference contribution同行評審

2 引文 斯高帕斯(Scopus)

摘要

This study intends to develop a methodology of fraudulent transaction detection model. The algorithm of XGBoost integrating the techniques of SMOTE sampling method and Bayesian Hyperparameter Optimization, is proposed to separate fraud transactions from non-fraud transactions. The experimental results based on the public data set of financial statement fraud from Kaggle website show the proposed model is better than the commonly used binary-classification methods, such as Logistic Regression, SVM, KNN, Random Forest, XGBoost without Hyperparameter Tuning and Multilayer Perceptron. The method of establishing fraud detection models assists people who lack the machine learning domain expertise for the modeling and tuning parameter techniques. It can help to detect abnormal transactions as early as possible and carry out risk management for banking industry.

原文English
主出版物標題Information Systems and Technologies - WorldCIST 2022
編輯Alvaro Rocha, Hojjat Adeli, Gintautas Dzemyda, Fernando Moreira
發行者Springer Science and Business Media Deutschland GmbH
頁面148-154
頁數7
ISBN(列印)9783031048180
DOIs
出版狀態Published - 2022
事件10th World Conference on Information Systems and Technologies, WorldCIST 2022 - Budva, 黑山
持續時間: 12 4月 202214 4月 2022

出版系列

名字Lecture Notes in Networks and Systems
469 LNNS
ISSN(列印)2367-3370
ISSN(電子)2367-3389

Conference

Conference10th World Conference on Information Systems and Technologies, WorldCIST 2022
國家/地區黑山
城市Budva
期間12/04/2214/04/22

指紋

深入研究「Machine Learning Detection for Financial Statement Fraud」主題。共同形成了獨特的指紋。

引用此