摘要
This study proposes an advanced data-driven method which relies on the Multivariate Adaptive Regression Splines (MARS) machine learning and Social Spider Algorithm (SSA) metaheuristic for predicting soil erosion susceptibility. The MARS is employed to infer a decision boundary that separates the input data space into two distinctive regions of ‘erosion’ and ‘non-erosion’. Meanwhile, the SSA metaheuristic is aimed at optimizing the MARS performance by automatically fine-tuning its hyper-parameters. The proposed SSA optimized MARS method, named as SSAO-MARS, is trained and validated by a set of 236 samples of soil plot conditions associated with their corresponding erosion status. The research finding shows that the newly developed SSAO-MARS can attain good predictive outcomes with classification accuracy rate of roughly 96%. Therefore, the newly developed model can be a useful tool to assist land management agencies.
原文 | English |
---|---|
文章編號 | 108066 |
期刊 | Measurement: Journal of the International Measurement Confederation |
卷 | 164 |
DOIs | |
出版狀態 | Published - 11月 2020 |