Machine learning approach to predicting tunnel field-effect transistors

Chandni Akbar, Narasimhulu Thoti, Yi-Ming Li*

*此作品的通信作者

研究成果: Conference contribution同行評審

5 引文 斯高帕斯(Scopus)

摘要

We for the first time investigate the possibility to replace the device simulation for tunnel field-effect transistors (TFETs) with a machine learning (ML) algorithm. By incorporating the experimentally validated device simulation, a keyML technique named random forest regression (RFR) model is advanced and applied to predict characteristics of TFETs. The results of this work may benefit the design and fabrication of TFETs based on the well-trained RFR model. Very fast and accurate drain current (ID) prediction in terms of the engineering acceptable root-mean-square (RMSE) error inaugurates TFET technology with ML with a potential application to significantly reduce the computational cost.

原文English
主出版物標題VLSI-TSA 2021 - 2021 International Symposium on VLSI Technology, Systems and Applications, Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665419345
DOIs
出版狀態Published - 19 4月 2021
事件2021 International Symposium on VLSI Technology, Systems and Applications, VLSI-TSA 2021 - Hsinchu, Taiwan
持續時間: 19 4月 202122 4月 2021

出版系列

名字VLSI-TSA 2021 - 2021 International Symposium on VLSI Technology, Systems and Applications, Proceedings

Conference

Conference2021 International Symposium on VLSI Technology, Systems and Applications, VLSI-TSA 2021
國家/地區Taiwan
城市Hsinchu
期間19/04/2122/04/21

指紋

深入研究「Machine learning approach to predicting tunnel field-effect transistors」主題。共同形成了獨特的指紋。

引用此