Long Short-Term Memory Neural Network to Enhance the Data Rate and Performance for Rolling Shutter Camera Based Visible Light Communication (VLC)

China Wei Peng, Deng Cheng Tsai, Yun Shen Lin, Chi Wai Chow*, Yang Liu, Chien Hung Yeh

*此作品的通信作者

研究成果: Conference contribution同行評審

3 引文 斯高帕斯(Scopus)

摘要

We propose and demonstrate using Long-Short-Term-Memory neural-network (LSTM-NN) to mitigate inter-symbol-interference (ISI) in 4-level pulse-amplitude-modulation (PAM4) camera based visible-light-communication (VLC) system. Data-rate of 14.4-kbit/s with 3-m free-space transmission is achieved.

原文English
主出版物標題2022 Optical Fiber Communications Conference and Exhibition, OFC 2022 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781557524669
出版狀態Published - 2022
事件2022 Optical Fiber Communications Conference and Exhibition, OFC 2022 - San Diego, United States
持續時間: 6 3月 202210 3月 2022

出版系列

名字2022 Optical Fiber Communications Conference and Exhibition, OFC 2022 - Proceedings

Conference

Conference2022 Optical Fiber Communications Conference and Exhibition, OFC 2022
國家/地區United States
城市San Diego
期間6/03/2210/03/22

指紋

深入研究「Long Short-Term Memory Neural Network to Enhance the Data Rate and Performance for Rolling Shutter Camera Based Visible Light Communication (VLC)」主題。共同形成了獨特的指紋。

引用此