Live Demonstration: Real-time EEG-based Affective Computing Using On-chip Learning Long-term Recurrent Convolutional Network

Cheng Jie Yang, Wei Chih Li, Meng Ting Wan, Wai Chi Fang*

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

An edge artificial intelligence (AI) affective computing system based on electroencephalogram (EEG) will be demonstrated for multi-class emotional classification. It's composed of a dry electrode EEG headset, RISC-V feature extraction processor, long-term recurrent convolutional network (LRCN) on-chip platform, and graphical user interface (GUI). The LRCN platform is implemented with a TSMC 16-nm FinFET technology chip for efficient edge AI application included training and acceleration. Bluetooth 2.1 modules are deployed to construct a complete wireless edge-AI system from front-end to back-end. It takes 350 ms to identify and demonstrate one emotion state from the EEG headset front-end to the GUI display back-end.

原文English
主出版物標題BioCAS 2021 - IEEE Biomedical Circuits and Systems Conference, Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781728172040
DOIs
出版狀態Published - 2021
事件2021 IEEE Biomedical Circuits and Systems Conference, BioCAS 2021 - Virtual, Online, 德國
持續時間: 6 10月 20219 10月 2021

出版系列

名字BioCAS 2021 - IEEE Biomedical Circuits and Systems Conference, Proceedings

Conference

Conference2021 IEEE Biomedical Circuits and Systems Conference, BioCAS 2021
國家/地區德國
城市Virtual, Online
期間6/10/219/10/21

指紋

深入研究「Live Demonstration: Real-time EEG-based Affective Computing Using On-chip Learning Long-term Recurrent Convolutional Network」主題。共同形成了獨特的指紋。

引用此