LIDAR DEPTH MAP GUIDED IMAGE COMPRESSION MODEL

Alessandro Gnutti*, Stefano Della Fiore, Mattia Savardi, Yi Hsin Chen, Riccardo Leonardi*, Wen Hsiao Peng

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

The incorporation of LiDAR technology into some high-end smartphones has unlocked numerous possibilities across various applications, including photography, image restoration, augmented reality, and more. In this paper, we introduce a novel direction that harnesses LiDAR depth maps to enhance the compression of the corresponding RGB camera images. To the best of our knowledge, this represents the initial exploration in this particular research direction. Specifically, we propose a Transformer-based learned image compression system capable of achieving variable-rate compression using a single model while utilizing the LiDAR depth map as supplementary information for both the encoding and decoding processes. Experimental results demonstrate that integrating LiDAR yields an average PSNR gain of 0.83 dB and an average bitrate reduction of 16% as compared to its absence.

原文English
主出版物標題2024 IEEE International Conference on Image Processing, ICIP 2024 - Proceedings
發行者IEEE Computer Society
頁面1890-1896
頁數7
ISBN(電子)9798350349399
DOIs
出版狀態Published - 2024
事件31st IEEE International Conference on Image Processing, ICIP 2024 - Abu Dhabi, 阿拉伯聯合酋長國
持續時間: 27 10月 202430 10月 2024

出版系列

名字Proceedings - International Conference on Image Processing, ICIP
ISSN(列印)1522-4880

Conference

Conference31st IEEE International Conference on Image Processing, ICIP 2024
國家/地區阿拉伯聯合酋長國
城市Abu Dhabi
期間27/10/2430/10/24

指紋

深入研究「LIDAR DEPTH MAP GUIDED IMAGE COMPRESSION MODEL」主題。共同形成了獨特的指紋。

引用此