TY - JOUR
T1 - Lesion delineation framework for vestibular schwannoma, meningioma and brain metastasis for gamma knife radiosurgery using stereotactic magnetic resonance images
AU - Lee, Wei Kai
AU - Yang, Huai Che
AU - Lee, Cheng Chia
AU - Lu, Chia Feng
AU - Wu, Chih Chun
AU - Chung, Wen Yuh
AU - Wu, Hsiu Mei
AU - Guo, Wan Yuo
AU - Wu, Yu Te
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/2
Y1 - 2023/2
N2 - Background and objective: GKRS is an effective treatment for smaller intracranial tumors with a high control rate and low risk of complications. Target delineation in medical MR images is essential in the planning of GKRS and follow-up. A deep learning–based algorithm can effectively segment the targets from medical images and has been widely explored. However, state-of-the-art deep learning–based target delineation uses fixed sizes, and the isotropic voxel size may not be suitable for stereotactic MR images which use different anisotropic voxel sizes and numbers of slices according to the lesion size and location for clinical GKRS planning. This study developed an automatic deep learning–based segmentation scheme for stereotactic MR images. Methods: We retrospectively collected stereotactic MR images from 506 patients with VS, 1,069 patients with meningioma and 574 patients with BM who had been treated using GKRS; the lesion contours and individual T1W+C and T2W MR images were extracted from the GammaPlan system. The three-dimensional patching-based training strategy and dual-pathway architecture were used to manage inconsistent FOVs and anisotropic voxel size. Furthermore, we used two-parametric MR image as training input to segment the regions with different image characteristics (e.g., cystic lesions) effectively. Results: Our results for VS and BM demonstrated that the model trained using two-parametric MR images significantly outperformed the model trained using single-parametric images with median Dice coefficients (0.91, 0.05 versus 0.90, 0.06, and 0.82, 0.23 versus 0.78, 0.34, respectively), whereas predicted delineations in meningiomas using the dual-pathway model were dominated by single-parametric images (median Dice coefficients 0.83, 0.17 versus 0.84, 0.22). Finally, we combined three data sets to train the models, achieving the comparable or even higher testing median Dice (VS: 0.91, 0.07; meningioma: 0.83, 0.22; BM: 0.84, 0.23) in three diseases while using two-parametric as input. Conclusions: Our proposed deep learning–based tumor segmentation scheme was successfully applied to multiple types of intracranial tumor (VS, meningioma and BM) undergoing GKRS and for segmenting the tumor effectively from stereotactic MR image volumes for use in GKRS planning.
AB - Background and objective: GKRS is an effective treatment for smaller intracranial tumors with a high control rate and low risk of complications. Target delineation in medical MR images is essential in the planning of GKRS and follow-up. A deep learning–based algorithm can effectively segment the targets from medical images and has been widely explored. However, state-of-the-art deep learning–based target delineation uses fixed sizes, and the isotropic voxel size may not be suitable for stereotactic MR images which use different anisotropic voxel sizes and numbers of slices according to the lesion size and location for clinical GKRS planning. This study developed an automatic deep learning–based segmentation scheme for stereotactic MR images. Methods: We retrospectively collected stereotactic MR images from 506 patients with VS, 1,069 patients with meningioma and 574 patients with BM who had been treated using GKRS; the lesion contours and individual T1W+C and T2W MR images were extracted from the GammaPlan system. The three-dimensional patching-based training strategy and dual-pathway architecture were used to manage inconsistent FOVs and anisotropic voxel size. Furthermore, we used two-parametric MR image as training input to segment the regions with different image characteristics (e.g., cystic lesions) effectively. Results: Our results for VS and BM demonstrated that the model trained using two-parametric MR images significantly outperformed the model trained using single-parametric images with median Dice coefficients (0.91, 0.05 versus 0.90, 0.06, and 0.82, 0.23 versus 0.78, 0.34, respectively), whereas predicted delineations in meningiomas using the dual-pathway model were dominated by single-parametric images (median Dice coefficients 0.83, 0.17 versus 0.84, 0.22). Finally, we combined three data sets to train the models, achieving the comparable or even higher testing median Dice (VS: 0.91, 0.07; meningioma: 0.83, 0.22; BM: 0.84, 0.23) in three diseases while using two-parametric as input. Conclusions: Our proposed deep learning–based tumor segmentation scheme was successfully applied to multiple types of intracranial tumor (VS, meningioma and BM) undergoing GKRS and for segmenting the tumor effectively from stereotactic MR image volumes for use in GKRS planning.
KW - Convolutional neural network
KW - Gamma knife
KW - Magnetic resonance imaging
KW - Radiosurgery
UR - http://www.scopus.com/inward/record.url?scp=85144612935&partnerID=8YFLogxK
U2 - 10.1016/j.cmpb.2022.107311
DO - 10.1016/j.cmpb.2022.107311
M3 - Article
C2 - 36577161
AN - SCOPUS:85144612935
SN - 0169-2607
VL - 229
JO - Computer Methods and Programs in Biomedicine
JF - Computer Methods and Programs in Biomedicine
M1 - 107311
ER -