TY - JOUR
T1 - Learning to Solve Task-Optimized Group Search for Social Internet of Things
AU - Yang, Chen Hsu
AU - Shuai, Hong Han
AU - Shen, Chih Ya
AU - Chen, Ming Syan
N1 - Publisher Copyright:
IEEE
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/2
Y1 - 2021/2
N2 - With the maturity and popularity of Internet of Things (IoT), the notion of Social Internet of Things (SIoT) has been proposed to support novel applications and networking services for the IoT in more effective and efficient ways. Although there are many works for SIoT, they focus on designing the architectures and protocols for SIoT under the specific schemes. How to efficiently utilize the collaboration capability of SIoT to complete complex tasks remains unexplored. Therefore, we propose a new problem family, namely, Task-Optimized SIoT Selection (TOSS), to find the best group of IoT objects for a given set of tasks in the task pool. TOSS aims to select the target SIoT group such that the target SIoT group is able to easily communicate with each other while maximizing the accuracy of performing the given tasks. We propose two problem formulations, named Bounded Communication-loss TOSS (BC-TOSS) and Robustness Guaranteed TOSS (RG-TOSS), for different scenarios and prove that they are both NP-hard and inapproximable. We propose a polynomial-time algorithm with a performance guarantee for BC-TOSS, and an efficient polynomial-time algorithm to obtain good solutions for RG-TOSS. Moreover, as RG-TOSS is NP-hard and inapproximable within any factor, we further propose Structure-Aware Reinforcement Learning (SARL) to leverage the Graph Convolutional Networks (GCN) and Deep Reinforcement Learning (DRL) to effectively solve RG-TOSS. Further, since we use graph models to simulate the problem instance for DRL, which is different from the real ones, we propose Structure-Aware Meta Reinforcement Learning (SAMRL) for fast adapting to new domains. Experimental results on multiple real datasets indicate that our proposed algorithms outperform the other deterministic and learning-based baseline approaches.
AB - With the maturity and popularity of Internet of Things (IoT), the notion of Social Internet of Things (SIoT) has been proposed to support novel applications and networking services for the IoT in more effective and efficient ways. Although there are many works for SIoT, they focus on designing the architectures and protocols for SIoT under the specific schemes. How to efficiently utilize the collaboration capability of SIoT to complete complex tasks remains unexplored. Therefore, we propose a new problem family, namely, Task-Optimized SIoT Selection (TOSS), to find the best group of IoT objects for a given set of tasks in the task pool. TOSS aims to select the target SIoT group such that the target SIoT group is able to easily communicate with each other while maximizing the accuracy of performing the given tasks. We propose two problem formulations, named Bounded Communication-loss TOSS (BC-TOSS) and Robustness Guaranteed TOSS (RG-TOSS), for different scenarios and prove that they are both NP-hard and inapproximable. We propose a polynomial-time algorithm with a performance guarantee for BC-TOSS, and an efficient polynomial-time algorithm to obtain good solutions for RG-TOSS. Moreover, as RG-TOSS is NP-hard and inapproximable within any factor, we further propose Structure-Aware Reinforcement Learning (SARL) to leverage the Graph Convolutional Networks (GCN) and Deep Reinforcement Learning (DRL) to effectively solve RG-TOSS. Further, since we use graph models to simulate the problem instance for DRL, which is different from the real ones, we propose Structure-Aware Meta Reinforcement Learning (SAMRL) for fast adapting to new domains. Experimental results on multiple real datasets indicate that our proposed algorithms outperform the other deterministic and learning-based baseline approaches.
KW - Social Internet of Things
KW - graph convolutional networks
KW - graph optimization problems
KW - meta learning
KW - reinforcement learning
UR - http://www.scopus.com/inward/record.url?scp=85100853345&partnerID=8YFLogxK
U2 - 10.1109/TKDE.2021.3057361
DO - 10.1109/TKDE.2021.3057361
M3 - Article
AN - SCOPUS:85100853345
SN - 1041-4347
VL - 34
SP - 5429
EP - 5445
JO - IEEE Transactions on Knowledge and Data Engineering
JF - IEEE Transactions on Knowledge and Data Engineering
IS - 11
ER -