Knockdown of Amphiregulin Triggers Doxorubicin-Induced Autophagic and Apoptotic Death by Regulating Endoplasmic Reticulum Stress in Glioblastoma Cells

I. Neng Lee, Jen Tsung Yang, Ming Ju Hsieh, Cheng Huang, Hsiu Chen Huang, Yu Ju Ku, Yu Ping Wu, Kuan Chieh Huang, Jui Chieh Chen*

*此作品的通信作者

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)

摘要

Glioblastoma multiforme (GBM) is the most common type of malignant brain tumor. The present standard treatment for GBM has not been effective; therefore, the prognosis remains dramatically poor and prolonged survival after treatment is still limited. The new therapeutic strategies are urgently needed to improve the treatment efficiency. Doxorubicin (Dox) has been widely used in the treatment of many cancers for decades. In recent years, with the advancement of delivery technology, more and more research indicates that Dox has the opportunity to be used in the treatment of GBM. Amphiregulin (AREG), a ligand of the epidermal growth factor receptor (EGFR), has been reported to have oncogenic effects in many cancer cell types and is implicated in drug resistance. However, the biological function and molecular mechanism of AREG in Dox treatment of GBM are still unclear. Here, we demonstrate that knockdown of AREG can boost Dox-induced endoplasmic reticulum (ER) stress to trigger activation in both autophagy and apoptosis in GBM cells, ultimately leading to cell death. To explore the importance of AREG in the clinic, we used available bioinformatics tools and found AREG is highly expressed in GBM tumor tissues that are associated with poor survival. In addition, we also used antibody array analysis to dissect pathways that are likely to be activated by AREG. Taken together, our results revealed AREG can serve as a potential therapeutic target and a promising biomarker in GBM.

原文English
頁(從 - 到)1461-1470
頁數10
期刊Journal of Molecular Neuroscience
70
發行號10
DOIs
出版狀態Published - 1 10月 2020

指紋

深入研究「Knockdown of Amphiregulin Triggers Doxorubicin-Induced Autophagic and Apoptotic Death by Regulating Endoplasmic Reticulum Stress in Glioblastoma Cells」主題。共同形成了獨特的指紋。

引用此