跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
IUML: Inception U-Net Based Multi-Task Learning for Density Level Classification And Crowd Density Estimation
Van Su Huynh, Vu Hoang Tran,
Ching-Chun Huang
研究成果
:
Conference contribution
›
同行評審
7
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「IUML: Inception U-Net Based Multi-Task Learning for Density Level Classification And Crowd Density Estimation」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Besides to
33%
Classification Level
100%
Classification Task
33%
CNN-based
33%
Crowd Density Estimation
100%
Decoder
33%
Density Level
100%
Density Map
66%
Density Map Estimation
33%
Encoder
33%
Encoder-decoder Architecture
33%
Estimation Task
33%
Evaluation Criteria
33%
High-resolution
33%
Image Resolution
33%
Image Size
33%
Image-based
33%
Inception Module
33%
Joint Feature
33%
Learning to Learn
33%
Multi-loss
33%
Multi-scale Feature Representation
33%
Multi-task Learning
100%
Multiple Evaluation
33%
Network Training
33%
People Counting
66%
Public Safety Management
33%
Scale Issues
33%
Scale Problem
33%
U-Net
100%
Computer Science
Classification Task
50%
Convolutional Neural Network
50%
Evaluation Criterion
50%
Map Estimation
100%
Multitask Learning
100%
U-Net
100%