TY - GEN
T1 - Is clicking mechanism good for flapping wing micro aerial vehicle?
AU - Chin, Yao Wei
AU - Lau, Gih Keong
PY - 2013
Y1 - 2013
N2 - In this paper, we examine the effect of non-sinusoidal flapping motion caused by click mechanism and compared it to a sinusoidal flapping motion. Many had observed and described the click mechanism through insect's anatomy. Through theoretical models and numerical studies, some dismissed its effect on flapping efficiency, while others predicted better thrust generation with it. Without concrete experimental proof, the argument is hypothetical. This work showed the benefits of the click mechanism by experiment, with its simple compliant thorax designed using carbon fiber and polyimide film. The click mechanism system is designed like a thin elastic plate which was compressed until bent, with its center point stable at either the top most extreme or the bottom most extreme positions. 'Clicking' occurs when the plate center is moved forcibly from one extreme to the other. Before it passes the midpoint, the plate center moves slowly as it tends to return to the original extreme and resist the displacement. When moved passed the midpoint, it now tends to move to the other extreme, together with the external force, resulting in a fast, snapping 'click' to the other extreme. Hence, the clicking prototype showed a sudden high increase in wing flap speed when it is moved beyond midpoint towards the other end. It also showed quick wing reversal and is able to produce consistent large wing stroke (∼115°). The clicking prototype, which weighs 3.78g, produces a higher thrust of 2.9g at a flapping frequency of 19Hz. In comparison, a 3.26g prototype of sinusoidal flapping motion with similar design configuration produces only 2.2g of thrust at 19Hz.
AB - In this paper, we examine the effect of non-sinusoidal flapping motion caused by click mechanism and compared it to a sinusoidal flapping motion. Many had observed and described the click mechanism through insect's anatomy. Through theoretical models and numerical studies, some dismissed its effect on flapping efficiency, while others predicted better thrust generation with it. Without concrete experimental proof, the argument is hypothetical. This work showed the benefits of the click mechanism by experiment, with its simple compliant thorax designed using carbon fiber and polyimide film. The click mechanism system is designed like a thin elastic plate which was compressed until bent, with its center point stable at either the top most extreme or the bottom most extreme positions. 'Clicking' occurs when the plate center is moved forcibly from one extreme to the other. Before it passes the midpoint, the plate center moves slowly as it tends to return to the original extreme and resist the displacement. When moved passed the midpoint, it now tends to move to the other extreme, together with the external force, resulting in a fast, snapping 'click' to the other extreme. Hence, the clicking prototype showed a sudden high increase in wing flap speed when it is moved beyond midpoint towards the other end. It also showed quick wing reversal and is able to produce consistent large wing stroke (∼115°). The clicking prototype, which weighs 3.78g, produces a higher thrust of 2.9g at a flapping frequency of 19Hz. In comparison, a 3.26g prototype of sinusoidal flapping motion with similar design configuration produces only 2.2g of thrust at 19Hz.
KW - Bio-inspired
KW - Biomimetics
KW - Click mechanism
KW - Compliant mechanism
KW - Flapping wing micro aerial vehicle
UR - http://www.scopus.com/inward/record.url?scp=84878372567&partnerID=8YFLogxK
U2 - 10.1117/12.2009627
DO - 10.1117/12.2009627
M3 - Conference contribution
AN - SCOPUS:84878372567
SN - 9780819494696
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Bioinspiration, Biomimetics, and Bioreplication 2013
T2 - Bioinspiration, Biomimetics, and Bioreplication 2013
Y2 - 11 March 2013 through 13 March 2013
ER -