Investigation of the optical properties of polyfluorene/ZnO nanocomposites

J. P. Zou, P. Le Rendu, I. Musa, Sheng-Hsiung Yang, Y. Dan, C. Ton That, T. P. Nguyen

研究成果: Article同行評審

58 引文 斯高帕斯(Scopus)

摘要

Polyfluorene (PF) and its derivatives are very promising candidates for organic light emitting diodes (OLEDs) in lighting applications because of their high photoluminescence and electroluminescence efficiencies. Recent investigations of potential materials for OLEDs have shown that introducing n-type inorganic nanoparticles into conjugated polymers is efficient to produce stable and high performance devices. In this study, composite thin films made by incorporation of zinc oxide (ZnO) nanoparticles into a PF derivative have been prepared and their optical properties have been investigated. The prepared thin films were stored in different media (in air, in vacuum, in the dark or exposed to light) in order to study environmental influences on the material stability. Analysis of spectral data obtained from infrared (IR), Raman, UV-vis, and photoluminescence (PL) measurements shows a large enhancement in luminescence for polymer nanocomposites while using high nanoparticle concentrations (within a limit of 10% ZnO). Time-resolved PL performed on those nanocomposite films corroborated the above result: it indicated that the light-emission enhancement can be explained by efficient energy transfer from nanoparticles to the polymer chains and increase of the chain separation distance. In addition, the nanocomposites were found to be more stable than pristine polymer films whatever the storage conditions were used. It was confirmed by IR analysis that incorporation of nanoparticles into polymers prohibited the formation of fluorenonyl groups in PF chains, which was identified as the main cause of the degradation of the polymer under photo-oxidation.

原文English
頁(從 - 到)3997-4003
頁數7
期刊Thin Solid Films
519
發行號12
DOIs
出版狀態Published - 1 4月 2011

指紋

深入研究「Investigation of the optical properties of polyfluorene/ZnO nanocomposites」主題。共同形成了獨特的指紋。

引用此