跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Interpretable Electronic Transfer Fraud Detection with Expert Feature Constructions
Yu Yen Hsin
*
,
Tian Shyr Dai
, Yen Wu Ti, Ming Chuan Huang
*
此作品的通信作者
資訊管理與財務金融學系
研究成果
:
Conference article
›
同行評審
5
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Interpretable Electronic Transfer Fraud Detection with Expert Feature Constructions」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Detection Performance
100%
Fraud
100%
Fraud Detection
100%
Modus Operandi
100%
Feature Construction
100%
Electronic Transfer
100%
Decision Tree
50%
Tree-based
50%
Transaction Data
50%
Vulnerability
50%
System Process
50%
Result Prediction
50%
Feature-based
50%
Ranking Method
50%
Rule-based Approach
50%
Recency
50%
Temporal Features
50%
Kolmogorov-Smirnov Test
50%
Machine Learning Techniques
50%
Financial Expertise
50%
Recall Rate
50%
Causal Effect
50%
Precision Rate
50%
Financial Institutions
50%
Time-varying Data
50%
Clearance Rate
50%
Banking
50%
Traditional Rule
50%
Labor Costs
50%
Financial System
50%
XGBoost
50%
Modeling Time
50%
Segmentation Feature
50%
Financial Fraud
50%
Extreme Gradient Boosting
50%
Frequency Features
50%
Light Gradient Boosting Machine
50%
Financial Characteristics
50%
Fraudsters
50%
Low Clearance
50%
Financial Organizations
50%
Computer Science
Detection Performance
100%
Fraud Detection
100%
Extreme Gradient Boosting
100%
Feature Construction
100%
Electronic Transfer
100%
Temporal Feature
50%
Transaction Data
50%
Interpretability
50%
Frequency Feature
50%
Gradient Boosting
50%
Machine Learning
50%
Learning System
50%
Decision Tree
50%