TY - JOUR
T1 - Internal rotation analysis of the microwave and millimeter wave spectra of fluoral (CF3CHO)
AU - Bermudez, C.
AU - Motiyenko, R. A.
AU - Cabezas, C.
AU - Ilyushin, V. V.
AU - Margulès, L.
AU - Endo, Y.
AU - Guillemin, J. C.
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/6/5
Y1 - 2022/6/5
N2 - The rotational spectrum (4–40 GHz and 50–330 GHz) has been measured and analyzed for trifluoroacetaldehyde, also known as fluoral (CF3CHO), which is one of the degradation products of the fluorinated contaminants emitted into the atmosphere. The complexity of the spectroscopic analysis of this molecule arises from the strong coupling between the internal rotation motion of CF3 group and the overall rotation of the molecule. The value obtained for its coupling constant (ρ = 0.91723481(49)) is comparable to the corresponding value of methanol (CH3OH, ρ = 0.81), which is known for its complex spectrum. A total of 12,322 transitions of the ground, the first and second excited torsional states (ΔE1υt = 62.0183(13)cm−1; ΔE2υt = 120.3315(13)cm−1) with J ≤ 50 were included in the analysis that was performed employing the rho-axis-method (RAM), and the RAM36 code. A fit within experimental error (root mean square deviation equals to 35 kHz) has been achieved for this dataset using 47 parameters of the RAM torsion-rotation Hamiltonian. In the course of the analysis, it became evident that for such high ρ value, as it is determined for fluoral, a larger than usual torsional basis set at the first diagonalization step of the two-step diagonalization procedure is required for achieving a fit within experimental error.
AB - The rotational spectrum (4–40 GHz and 50–330 GHz) has been measured and analyzed for trifluoroacetaldehyde, also known as fluoral (CF3CHO), which is one of the degradation products of the fluorinated contaminants emitted into the atmosphere. The complexity of the spectroscopic analysis of this molecule arises from the strong coupling between the internal rotation motion of CF3 group and the overall rotation of the molecule. The value obtained for its coupling constant (ρ = 0.91723481(49)) is comparable to the corresponding value of methanol (CH3OH, ρ = 0.81), which is known for its complex spectrum. A total of 12,322 transitions of the ground, the first and second excited torsional states (ΔE1υt = 62.0183(13)cm−1; ΔE2υt = 120.3315(13)cm−1) with J ≤ 50 were included in the analysis that was performed employing the rho-axis-method (RAM), and the RAM36 code. A fit within experimental error (root mean square deviation equals to 35 kHz) has been achieved for this dataset using 47 parameters of the RAM torsion-rotation Hamiltonian. In the course of the analysis, it became evident that for such high ρ value, as it is determined for fluoral, a larger than usual torsional basis set at the first diagonalization step of the two-step diagonalization procedure is required for achieving a fit within experimental error.
KW - Atmospheric
KW - Fluorinated aldehydes
KW - High resolution
KW - Large amplitude motion
KW - Molecular spectroscopy
KW - Rotational spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=85126730961&partnerID=8YFLogxK
U2 - 10.1016/j.saa.2022.121071
DO - 10.1016/j.saa.2022.121071
M3 - Article
C2 - 35276473
AN - SCOPUS:85126730961
SN - 1386-1425
VL - 274
JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
M1 - 121071
ER -