Interface engineered HfO2-based 3D vertical ReRAM

Boris Hudec, I. Ting Wang, Wei Li Lai, Che Chia Chang, Peter Jančovič, Karol Fröhlich, Matej Mičušík, Mária Omastová, Tuo-Hung Hou

研究成果: Article同行評審

26 引文 斯高帕斯(Scopus)

摘要

We demonstrate a double-layer 3D vertical resistive random access memory (ReRAM) stack implementing a Pt/HfO2/TiN memory cell. The HfO2 switching layer is grown by atomic layer deposition on the sidewall of a SiO2/TiN/SiO2/TiN/SiO2 multilayer pillar. A steep vertical profile was achieved using CMOS-compatible TiN dry etching. We employ in situ TiN bottom interface engineering by ozone, which results in (a) significant forming voltage reduction which allows for forming-free operation in AC pulsed mode, and (b) non-linearity tuning of low resistance state by current compliance during Set operation. The vertical ReRAM shows excellent read and write disturb immunity between vertically stacked cells, retention over 104 s and excellent switching stability at 400 K. Endurance of 107 write cycles was achieved using 100 ns wide AC pulses while fast switching speed using pulses of only 10 ns width is also demonstrated. The active switching region was evaluated to be located closer to the bottom interface which allows for the observed high endurance.

原文English
文章編號215102
頁數9
期刊Journal of Physics D: Applied Physics
49
發行號21
DOIs
出版狀態Published - 29 4月 2016

指紋

深入研究「Interface engineered HfO2-based 3D vertical ReRAM」主題。共同形成了獨特的指紋。

引用此