Intelligent Supply Chain Management Modules Enabling Advanced Manufacturing for the Electric-Mechanical Equipment Industry

Chun Hua Chien, Po Yen Chen, Amy J.C. Trappey*, Charles V. Trappey

*此作品的通信作者

研究成果: Article同行評審

11 引文 斯高帕斯(Scopus)

摘要

Electric-mechanical equipment manufacturing industries focus on the implementation of intelligent manufacturing systems in order to enhance customer services for highly customized machines with high-profit margins such as electric power transformers. Intelligent manufacturing consists in using supply chain data that are integrated for smart decision making during the production life cycle. This research, in cooperation with a large electric power transformer manufacturer, provides an overview of critical intelligent manufacturing (IM) technologies. An ontology schema forms the terminology relationships needed to build two intelligent supply chain management (SCM) modules for the IM system demonstration. The two core modules proposed in this research are the intelligent supplier selection and component ordering module and the product quality prediction module. The intelligent supplier selection and component ordering module dispatches orders that match the best options of suppliers based on combined analytic hierarchy process (AHP) analysis and multiobjective integer optimization. In the case study, the intelligent supplier selection and component ordering module demonstrates several acceptable Pareto solutions based on strict constraints, which is a very challenging task for decision makers without assistance. The second module is the product quality prediction module which uses multivariate regression and ARIMA to predict the quality of the finished products. Results show that the R square values are very close to 1. The module shortens the time for the company to accurately judge whether the two semifinished iron cores for the product meet the quality requirements. The component supplier selection module and the finished product quality prediction module developed in this research can be extended to other IM systems for general high-end equipment manufacturers using mass customization.

原文English
文章編號8221706
期刊Complexity
2022
DOIs
出版狀態Published - 2022

指紋

深入研究「Intelligent Supply Chain Management Modules Enabling Advanced Manufacturing for the Electric-Mechanical Equipment Industry」主題。共同形成了獨特的指紋。

引用此