Intelligent Manufacturing Monitoring and Surface Roughness Prediction System-A Case Study of Aluminum Parts Milling

Po Yang Chen, Ya Wen Hsu, Ming Chan Lee, Jau Woei Perng

研究成果: Conference contribution同行評審

摘要

The aim of this study is to create an economical automatic machining system to predict surface roughness during processing, which is an important quality criterion. Complex network accelerators and software acceleration are used to achieve real-time calculations. When the expected results are not obtained, the turning tool is changed or processing is halted. The system can maximize the processing efficiency. In this study, a deep neural network is used to predict the roughness of the plane, and sensors are installed at different positions to study the effects of different positions and numbers on accuracy. The accuracy obtained is 92.3%.

原文English
主出版物標題2020 International Automatic Control Conference, CACS 2020
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781728171982
DOIs
出版狀態Published - 4 11月 2020
事件2020 International Automatic Control Conference, CACS 2020 - Hsinchu, 台灣
持續時間: 4 11月 20207 11月 2020

出版系列

名字2020 International Automatic Control Conference, CACS 2020

Conference

Conference2020 International Automatic Control Conference, CACS 2020
國家/地區台灣
城市Hsinchu
期間4/11/207/11/20

指紋

深入研究「Intelligent Manufacturing Monitoring and Surface Roughness Prediction System-A Case Study of Aluminum Parts Milling」主題。共同形成了獨特的指紋。

引用此