Integrating Low-Cost LiDAR and Stereo Camera for 3D Object Detection with Lidar-Stereo Fusion and Cost Volume Enhancement

研究成果: Conference contribution同行評審

摘要

We propose a fusion network that integrates LiDAR and stereo images multiple times for 3D object detection. It fuses projected left/right LiDAR maps with stereo camera images at the beginning of the network, then adopts the LiDAR maps again for cost volume enhancement with a novel parallel fusion network (PFNet). The PFNet combines two distinctive strategies: a learnable strategy and a physical modeling strategy. The learnable design modifies HeirCCVNorm (Hierarchical Conditional Cost Volume Normalization). The physical modeling involves Gaussian embedding of LiDAR signals. Our simulations showed that the proposed network has better 3D object detection performance than a recent acclaimed state-of-the-art method when using the same dataset for training.

原文English
主出版物標題Proceedings of 2022 IEEE Region 10 International Conference, TENCON 2022
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665450959
DOIs
出版狀態Published - 2022
事件2022 IEEE Region 10 International Conference, TENCON 2022 - Virtual, Online, Hong Kong
持續時間: 1 11月 20224 11月 2022

出版系列

名字IEEE Region 10 Annual International Conference, Proceedings/TENCON
2022-November
ISSN(列印)2159-3442
ISSN(電子)2159-3450

Conference

Conference2022 IEEE Region 10 International Conference, TENCON 2022
國家/地區Hong Kong
城市Virtual, Online
期間1/11/224/11/22

指紋

深入研究「Integrating Low-Cost LiDAR and Stereo Camera for 3D Object Detection with Lidar-Stereo Fusion and Cost Volume Enhancement」主題。共同形成了獨特的指紋。

引用此