Information-theoretic analysis of brain white matter fiber orientation distribution functions

Ming Chang Chiang*, Andrea D. Klunder, Katie McMahon, Greig I. De Zubicaray, Margaret J. Wright, Arthur W. Toga, Paul M. Thompson

*此作品的通信作者

研究成果: Conference contribution同行評審

14 引文 斯高帕斯(Scopus)

摘要

We propose a new information-theoretic metric, the symmetric Kullback-Leibler divergence (sKL-divergence), to measure the difference between two water diffusivity profiles in high angular resolution diffusion imaging (HARDI). Water diffusivity profiles are modeled as probability density functions on the unit sphere, and the sKL-divergence is computed from a spherical harmonic series, which greatly reduces computational complexity. Adjustment of the orientation of diffusivity functions is essential when the image is being warped, so we propose a fast algorithm to determine the principal direction of diffusivity functions using principal component analysis (PCA). We compare sKL-divergence with other inner-product based cost functions using synthetic samples and real HARDI data, and show that the sKL-divergence is highly sensitive in detecting small differences between two diffusivity profiles and therefore shows promise for applications in the nonlinear registration and multisubject statistical analysis of HARDI data.

原文English
主出版物標題Information Processing in Medical lmaging - 20th International Conference, IPMI 2007, Proceedings
發行者Springer Verlag
頁面172-182
頁數11
ISBN(列印)3540732721, 9783540732723
DOIs
出版狀態Published - 2007
事件20th International Conference on Information Processing in Medical lmaging, IPMI 2007 - Kerkrade, 荷蘭
持續時間: 2 7月 20076 7月 2007

出版系列

名字Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
4584 LNCS
ISSN(列印)0302-9743
ISSN(電子)1611-3349

Conference

Conference20th International Conference on Information Processing in Medical lmaging, IPMI 2007
國家/地區荷蘭
城市Kerkrade
期間2/07/076/07/07

指紋

深入研究「Information-theoretic analysis of brain white matter fiber orientation distribution functions」主題。共同形成了獨特的指紋。

引用此