Improving the DMT performance for MIMO communication with linear receivers

Ti Wen Tang, Min Kun Chen, Francis Lu

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)


Multiple-input-multiple-output (MIMO) linear receivers are often of more practical interest than maximum-likelihood (ML) receivers due to their low decoding complexity but at the cost of worse diversity gain performance. Such a statement on performance loss is due to the assumption of using an independent identically distributed complex Gaussian vector as channel input. By removing this assumption, we find that the diversity performance of MIMO linear receivers can be significantly improved. In an extreme case, it can be the same as that of ML receivers. Specifically, in this paper, we investigate the diversity-multiplexing tradeoff (DMT) performance of MIMO linear receivers with colored and possibly degenerate Gaussian channel inputs. By varying the rank of the covariance matrix of the channel input vector and by allowing temporal coding across multiple channel uses, we show that the MIMO linear receiver can achieve a much better DMT performance than the currently known one. Explicit optimal code constructions are provided, along with simulation results, to justify the above findings. For the case of (2 x 2) and (3 x 3) MIMO linear receivers, simulation results show that the newly proposed codes provide significant gains of 10 and 12.08 dB in Eb/N0 at bit error rate 10-4 compared to the conventional schemes, respectively.

頁(從 - 到)1189-1200
期刊IEEE Transactions on Vehicular Technology
出版狀態Published - 1 1月 2013


深入研究「Improving the DMT performance for MIMO communication with linear receivers」主題。共同形成了獨特的指紋。