Improvement of pattern learning and recognition capability in ratio-memory cellular neural networks with non-discrete-type Hebbian learning algorithm

Chung-Yu Wu*, Jui L. Lai

*此作品的通信作者

    研究成果: Conference article同行評審

    5 引文 斯高帕斯(Scopus)

    摘要

    A ratio-memory cellular neural networks (RMCNN) with non-discrete-type Hebbian learning algorithm to learn and recognize the image patterns is proposed and analyzed. In the proposed RMCNN, the space-variant A templates with self-feedback coefficients are determined from the trained patterns using the non-discrete-type Hebbian learning algorithm during the learning period. The determined A templates stored in the ratio memory are used in the RMCNN to recognize the learned patterns with different Gaussian noise levels and output the correct patterns. The operation of the proposed RMCNN has been simulated with Matlab software. It is shown that the 9×9 RMCNN can successfully learn recognize 23 noisy patterns with Gaussian noise variance of 0.3. As compared to other learnable CNNs as associate memories, the proposed RMCNN with non-discrete-type Hebbian learning algorithm and 5 coefficients in A template can learn and recognize much more patterns. With improved pattern learning and recognition capability, the proposed RMCNN still can be implemented in VLSI for various applications.

    原文English
    頁(從 - 到)I/629-I/632
    期刊Proceedings - IEEE International Symposium on Circuits and Systems
    1
    DOIs
    出版狀態Published - 2002
    事件2002 IEEE International Symposium on Circuits and Systems - Phoenix, AZ, United States
    持續時間: 26 5月 200229 5月 2002

    指紋

    深入研究「Improvement of pattern learning and recognition capability in ratio-memory cellular neural networks with non-discrete-type Hebbian learning algorithm」主題。共同形成了獨特的指紋。

    引用此