Improved semidefinite programming bounds for binary codes by split distance enumerations

Pin Chieh Tseng, Ching Yi Lai, Wei Hsuan Yu

研究成果: Conference contribution同行評審

摘要

We study the maximum size of a binary code A(n, d) with code length n and minimum distance d. Schrijver studied the Terwilliger algebra of the Hamming scheme and proposed a semidefinite program to upper bound A(n, d). We derive additional semidefinite constraints based on a split Terwilliger algebra so that Schrijver's semidefinite programming bounds on A(n, d) can be improved. In particular, we show that A(18, 4) ≤ 6551 and A(19, 4) 13087.

原文English
主出版物標題2022 IEEE International Symposium on Information Theory, ISIT 2022
發行者Institute of Electrical and Electronics Engineers Inc.
頁面3073-3078
頁數6
ISBN(電子)9781665421591
DOIs
出版狀態Published - 2022
事件2022 IEEE International Symposium on Information Theory, ISIT 2022 - Espoo, Finland
持續時間: 26 6月 20221 7月 2022

出版系列

名字IEEE International Symposium on Information Theory - Proceedings
2022-June
ISSN(列印)2157-8095

Conference

Conference2022 IEEE International Symposium on Information Theory, ISIT 2022
國家/地區Finland
城市Espoo
期間26/06/221/07/22

指紋

深入研究「Improved semidefinite programming bounds for binary codes by split distance enumerations」主題。共同形成了獨特的指紋。

引用此