Impaired brain network architecture as neuroimaging evidence of pain in diabetic neuropathy

Chi Chao Chao, Paul Chen Hsieh, Chien Ho Janice Lin, Shin Leh Huang, Sung Tsang Hsieh, Ming Chang Chiang*


研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)


Aims: To investigate alterations in structural brain networks due to chronic diabetic neuropathic pain. Methods: The current study recruited 24 patients with painful diabetic neuropathy (PDN) to investigate the influences of chronic pain on the brain. Thirteen patients with painless diabetic neuropathy (PLDN) and 24 healthy adults were recruited as disease and healthy controls. White matter connectivity of the brain networks constructed by diffusion tractography was compared across groups using the Network-based statistic (NBS) method. Graph theoretical analysis was further applied to assess topological changes of the brain networks. Results: The PDN patients had a significant reduction in white matter connectivity compared with PLDN and controls in the limbic and temporal regions, particularly the insula, hippocampus and parahippocampus, the amygdala, and the middle temporal gyrus. The PDN patients also exhibited an altered topology of the brain networks with reduced global efficiency and betweenness centrality. Conclusion: The current findings indicate that topological alterations of brain networks may serve as a biomarker for pain-induced maladaptive reorganization of the brain in PDN. Given the high prevalence of diabetes worldwide, novel insights from network sciences to investigate the central mechanisms of diabetic neuropathic pain are warranted.

期刊Diabetes Research and Clinical Practice
出版狀態Published - 4月 2022


深入研究「Impaired brain network architecture as neuroimaging evidence of pain in diabetic neuropathy」主題。共同形成了獨特的指紋。