摘要
In this work, we investigated the effects of the crystal phase of ZrO2 on charge trapping memtransistors (CTMTs) as synaptic devices for neural network applications. The ZrO2 deposited through thermal (t-ZrO2) atomic layer deposition (ALD) and plasma (p-ZrO2) ALD were analyzed using an X-ray diffractometer, which indicated that the t-ZrO2 consisted of pure cubic phase, whereas p-ZrO2 consisted of both cubic and tetragonal phases. Through X-ray photoelectron spectroscopy analysis, we then constructed the energy band diagram of the gate stacks. The \Delta \mathrm E_{C} of t- and p-ZrO2 with respect to tunneling and blocking Al2O3 were 1.84 and 1.19 eV respectively. Because of the relatively large \Delta \text{E}_{\mathrm{ C}} of t-ZrO2, the window of the flat band voltage ( \text{V}_{\mathrm{ FB}} ) shift extracted from charge trapping capacitors was enlarged by 591.9 mV more than the one using p-ZrO2 as the charge trapping layer. Retention was also improved by 10.4% after 10^{5} s in the t-ZrO2 case. Finally, we fabricated the CTMTs with the gate stack of the t-ZrO2 case and demonstrated their characteristics as synaptic devices. With the optimization of pulse schemes, we reduced the nonlinear factors of depression ( {\alpha } _{\mathrm{ d}} ) and potentiation ( {\alpha } _{\mathrm{ p}} ) from -6.72 and 6.47 to 0.03 and 0.01 respectively, enlarged the ON/OFF ratio from 15.6 to 70.4 and increased the recognition accuracy from 27.6% to 86.5% simultaneously.
原文 | English |
---|---|
文章編號 | 9091548 |
頁(從 - 到) | 572-576 |
頁數 | 5 |
期刊 | IEEE Journal of the Electron Devices Society |
卷 | 8 |
DOIs | |
出版狀態 | Published - 2020 |