Identification of pan-kinase-family inhibitors using graph convolutional networks to reveal family-sensitive pre-moieties

Xiang Yu Lin, Yu Wei Huang, You Wei Fan, Yun Ti Chen, Nikhil Pathak, Yen Chao Hsu, Jinn Moon Yang*

*此作品的通信作者

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

Background: Human protein kinases, the key players in phosphoryl signal transduction, have been actively investigated as drug targets for complex diseases such as cancer, immune disorders, and Alzheimer’s disease, with more than 60 successful drugs developed in the past 30 years. However, many of these single-kinase inhibitors show low efficacy and drug resistance has become an issue. Owing to the occurrence of highly conserved catalytic sites and shared signaling pathways within a kinase family, multi-target kinase inhibitors have attracted attention. Results: To design and identify such pan-kinase family inhibitors (PKFIs), we proposed PKFI sets for eight families using 200,000 experimental bioactivity data points and applied a graph convolutional network (GCN) to build classification models. Furthermore, we identified and extracted family-sensitive (only present in a family) pre-moieties (parts of complete moieties) by utilizing a visualized explanation (i.e., where the model focuses on each input) method for deep learning, gradient-weighted class activation mapping (Grad-CAM). Conclusions: This study is the first to propose the PKFI sets, and our results point out and validate the power of GCN models in understanding the pre-moieties of PKFIs within and across different kinase families. Moreover, we highlight the discoverability of family-sensitive pre-moieties in PKFI identification and drug design.

原文English
文章編號247
期刊BMC Bioinformatics
23
DOIs
出版狀態Published - 4月 2022

指紋

深入研究「Identification of pan-kinase-family inhibitors using graph convolutional networks to reveal family-sensitive pre-moieties」主題。共同形成了獨特的指紋。

引用此