TY - JOUR
T1 - Id1 and Sonic Hedgehog Mediate Cell Cycle Reentry and Apoptosis Induced by Amyloid Beta-Peptide in Post-mitotic Cortical Neurons
AU - Chao, A. Ching
AU - Chen, Chien Hui
AU - Chang, Shih Hsin
AU - Huang, Chao Tzu
AU - Hwang, Wei Chao
AU - Yang, Ding I.
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Amyloid beta-peptide (Aβ), the neurotoxic component of senile plaques in Alzheimer’s disease (AD) brains, is known to trigger cell cycle reentry in post-mitotic neurons followed by apoptosis. However, the underlying mechanisms remain unclear. Recently, we have reported that Aβs stimulate the expression of inhibitor of differentiation-1 (Id1) to induce sonic hedgehog (SHH) (Hung et al., Mol Neurobiol 53(2):793–809, 2016), and both are mitogens capable of triggering cell cycle progression. In this work, we tested the hypothesis that Aβ-induced Id1 and SHH contribute to cell cycle reentry leading to apoptosis in neurons. We found that Aβ triggered cell cycle progression in the post-mitotic neurons, as indicated by the increased expression of two G1-phase markers including cyclin D1 and phosphorylated retinoblastoma protein (pRb), two G2-phase markers such as proliferating cell nuclear antigen (PCNA) and incorporation of 5-bromo-2′-deoxyuridine (BrdU) into newly synthesized DNA, as well as the mitotic marker histone H3 phosphorylated at Ser-10. As expected, Aβ also enhanced caspase-3 cleavage in the cortical neurons. Id1 siRNA, the neutralization antibody against SHH (SHH-Ab), and the cyclin-dependent kinase (CDK)-4/6 inhibitor PD0332991 all attenuated, in part or in full, the Aβ-induced expression of these cell cycle markers. Indeed, exogenous recombinant Id1 protein and the biologically active N-terminal fragment of SHH (SHH-N) were both sufficient to enhance the expression of cell cycle markers independent of Aβ. Taken together, our results revealed the critical roles of Id1 and SHH mediating Aβ-dependent cell cycle reentry and subsequently caspase-dependent apoptosis in the fully differentiated post-mitotic neurons, at least in vitro.
AB - Amyloid beta-peptide (Aβ), the neurotoxic component of senile plaques in Alzheimer’s disease (AD) brains, is known to trigger cell cycle reentry in post-mitotic neurons followed by apoptosis. However, the underlying mechanisms remain unclear. Recently, we have reported that Aβs stimulate the expression of inhibitor of differentiation-1 (Id1) to induce sonic hedgehog (SHH) (Hung et al., Mol Neurobiol 53(2):793–809, 2016), and both are mitogens capable of triggering cell cycle progression. In this work, we tested the hypothesis that Aβ-induced Id1 and SHH contribute to cell cycle reentry leading to apoptosis in neurons. We found that Aβ triggered cell cycle progression in the post-mitotic neurons, as indicated by the increased expression of two G1-phase markers including cyclin D1 and phosphorylated retinoblastoma protein (pRb), two G2-phase markers such as proliferating cell nuclear antigen (PCNA) and incorporation of 5-bromo-2′-deoxyuridine (BrdU) into newly synthesized DNA, as well as the mitotic marker histone H3 phosphorylated at Ser-10. As expected, Aβ also enhanced caspase-3 cleavage in the cortical neurons. Id1 siRNA, the neutralization antibody against SHH (SHH-Ab), and the cyclin-dependent kinase (CDK)-4/6 inhibitor PD0332991 all attenuated, in part or in full, the Aβ-induced expression of these cell cycle markers. Indeed, exogenous recombinant Id1 protein and the biologically active N-terminal fragment of SHH (SHH-N) were both sufficient to enhance the expression of cell cycle markers independent of Aβ. Taken together, our results revealed the critical roles of Id1 and SHH mediating Aβ-dependent cell cycle reentry and subsequently caspase-dependent apoptosis in the fully differentiated post-mitotic neurons, at least in vitro.
KW - Alzheimer’s disease (AD)
KW - Caspase-3
KW - Cyclin D1
KW - Histone H3
KW - Proliferating cell nuclear antigen (PCNA)
KW - Retinoblastoma protein (pRb)
UR - http://www.scopus.com/inward/record.url?scp=85060009704&partnerID=8YFLogxK
U2 - 10.1007/s12035-018-1098-5
DO - 10.1007/s12035-018-1098-5
M3 - Article
C2 - 29721855
AN - SCOPUS:85060009704
SN - 0893-7648
VL - 56
SP - 465
EP - 489
JO - Molecular Neurobiology
JF - Molecular Neurobiology
IS - 1
ER -