跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Hybrid Generative Adversarial Networks for News Recommendation
Duen Ren Liu
*
, Yang Huang, Ching Yi Tseng,
Shin Jye Lee
*
此作品的通信作者
資訊管理研究所
科技管理研究所
研究成果
:
Article
›
同行評審
3
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Hybrid Generative Adversarial Networks for News Recommendation」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Generative Adversarial Networks
100%
News Recommendation
100%
Matrix Factorization
70%
Long Short-term Memory
50%
Textual Content
40%
Network Model
30%
Convolutional Neural Network
20%
Recommendation System
20%
News Articles
20%
Collaborative Topic Modeling
20%
Network-based Recommendation
20%
Network Matrix
20%
Experiment Results
10%
Network Structure
10%
Content Features
10%
Attention Mechanism
10%
Novel Hybrids
10%
System Effectiveness
10%
Access to Information
10%
Online News
10%
News Websites
10%
Recommendation Model
10%
Preference Prediction
10%
Personalized Recommendation
10%
Latent Vector
10%
User-item
10%
Dynamic Preferences
10%
User Dynamics
10%
Latent Feature
10%
World News
10%
Item Features
10%
Latent Feature Extraction
10%
News Platforms
10%
Memory Matrix
10%
Content Extraction Signature
10%
Computer Science
Generative Adversarial Networks
100%
Matrix Factorization
70%
Long Short-Term Memory Network
50%
Convolutional Neural Network
20%
Topic Modeling
20%
Textual Content
20%
Network Matrix
20%
Feature Extraction
20%
Attention (Machine Learning)
10%
Relative Importance
10%
Information Access
10%
System Effectiveness
10%
Baseline Method
10%
Network Structure
10%
Engineering
Matrix Factorization
100%
Long Short-Term Memory
71%
Network Model
42%
Feature Extraction
28%
Convolutional Neural Network
28%
Relative Importance
14%