Human motion tracking using 3d image features with a long short-term memory mechanism model—an example of forward reaching

Kai Yu Chen, Li Wei Chou, Hui Min Lee, Shuenn Tsong Young, Cheng Hung Lin, Yi Shu Zhou, Shih Tsang Tang, Ying Hui Lai*

*此作品的通信作者

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)

摘要

Human motion tracking is widely applied to rehabilitation tasks, and inertial measurement unit (IMU) sensors are a well-known approach for recording motion behavior. IMU sensors can provide accurate information regarding three-dimensional (3D) human motion. However, IMU sensors must be attached to the body, which can be inconvenient or uncomfortable for users. To alleviate this issue, a visual-based tracking system from two-dimensional (2D) RGB images has been studied extensively in recent years and proven to have a suitable performance for human motion tracking. However, the 2D image system has its limitations. Specifically, human motion consists of spatial changes, and the 3D motion features predicted from the 2D images have limitations. In this study, we propose a deep learning (DL) human motion tracking technology using 3D image features with a deep bidirectional long short-term memory (DBLSTM) mechanism model. The experimental results show that, compared with the traditional 2D image system, the proposed system provides improved human motion tracking ability with RMSE in acceleration less than 0.5 (m/s2) X, Y, and Z directions. These findings suggest that the proposed model is a viable approach for future human motion tracking applications.

原文English
文章編號292
期刊Sensors
22
發行號1
DOIs
出版狀態Published - 1 1月 2022

指紋

深入研究「Human motion tracking using 3d image features with a long short-term memory mechanism model—an example of forward reaching」主題。共同形成了獨特的指紋。

引用此