跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Human-guided deep learning with ante-hoc explainability by convolutional network from non-image data for pregnancy prognostication
Herdiantri Sufriyana, Yu Wei Wu,
Emily Chia Yu Su
*
*
此作品的通信作者
生物醫學資訊研究所
研究成果
:
Article
›
同行評審
3
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Human-guided deep learning with ante-hoc explainability by convolutional network from non-image data for pregnancy prognostication」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Deep Learning
100%
Convolutional Networks
100%
Explainability
100%
Human Guided
100%
Non-image Data
100%
Diagnostic Imaging
66%
Knowledge Base
33%
Network Architecture
33%
Convolutional Neural Network
33%
Delivery Time
33%
Diagram Representation
33%
Best Model
33%
Area under the Curve
33%
Art Performance
33%
Model Representation
33%
Patient-Reported Outcomes Measurement Information System (PROMIS)
33%
Preventive Medicine
33%
Electronic Health Records
33%
Meaningful Image
33%
External Validation
33%
Health Insurance Database
33%
Internal Validation
33%
Prognostic Prediction Model
33%
Supervisory Authorities
33%
Actionable Insights
33%
Prelabor Rupture of Membranes
33%
Medicine and Dentistry
Diagnostic Imaging
100%
Prognostication
100%
Systematic Review
50%
Medicine
50%
Preventive Medicine
50%
Electronic Health Record
50%
Rupture of Membranes
50%
Biochemistry, Genetics and Molecular Biology
Electronic Health Record
100%