Highly Efficient HTM-Free Tin Perovskite Solar Cells with Outstanding Stability Exceeding 10000 h

Parameswaran Rajamanickam, Sudhakar Narra, Ashank Seetharaman, Eric Wei Guang Diau*

*此作品的通信作者

研究成果: Article同行評審

5 引文 斯高帕斯(Scopus)

摘要

The bottleneck in the rapid development of tin-based perovskite solar cells (TPSCs) is the inherent chemical instability. Although this is being addressed continuously, the device performance has not improved further due to the use of PEDOT:PSS as the hole-transport material (HTM), which has poor long-term stability. Herein we have applied commercial ITO nanoparticles over ITO glass substrates and altered the surface chemistry of the ITO electrode via a simple two-step thermal annealing, followed by a UV-ozone treatment. These surface-modified ITO electrodes display promising interfacial characteristics, such as a suitable band alignment owing to significantly reduced surface carbon contamination, increased In-O bonding, and reduced oxygen vacancies, that enabled fabrication of an HTM-free TPSC device according to a two-step method. The fabricated device possessed an outstanding power conversion efficiency (PCE) of 9.7%, along with a superior long-term stability by retaining over 90% of the initial PCE upon shelf storage in a glovebox for a period of over 10000 h. The application of ITO nanoparticles led to effective interfacial passivation, whose impacts on the long-term durability were assessed using electrochemical impedance spectroscopy, time-resolved photoluminescence decay profiles, and femtosecond transient absorption spectroscopy techniques.

原文English
頁(從 - 到)40700-40708
頁數9
期刊ACS Applied Materials and Interfaces
15
發行號34
DOIs
出版狀態Published - 30 8月 2023

指紋

深入研究「Highly Efficient HTM-Free Tin Perovskite Solar Cells with Outstanding Stability Exceeding 10000 h」主題。共同形成了獨特的指紋。

引用此