High Performance 2-Dimensional Systolic Array Design for Edge AI Accelerator

Wai Chi Fang*, Ching Jung Lin, Yi Kai Chen, Jing Ping Cheng

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

In the last decade, deep learning has surged in importance and application, often surpassing domain experts in prediction accuracy within short timeframes. However, its computational efficiency relies on complex algorithms, demanding significant resources. This paper addresses this challenge by integrating optimal parallel computing, data flow optimization, and tiling techniques to design AI accelerator processing elements. We validate these techniques by implementing the LRCN model using TSMC 40nm technology. Compared to prior research, our method achieves a 30% improvement in gate count for the same AI model, highlighting its advantages for edge AI applications.

原文English
主出版物標題11th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2024
發行者Institute of Electrical and Electronics Engineers Inc.
頁面361-362
頁數2
ISBN(電子)9798350386844
DOIs
出版狀態Published - 2024
事件11th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2024 - Taichung, 台灣
持續時間: 9 7月 202411 7月 2024

出版系列

名字11th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2024

Conference

Conference11th IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2024
國家/地區台灣
城市Taichung
期間9/07/2411/07/24

指紋

深入研究「High Performance 2-Dimensional Systolic Array Design for Edge AI Accelerator」主題。共同形成了獨特的指紋。

引用此