Hierarchical classification using ML/DL for sussex-huawei locomotion-transportation (SHL) recognition challenge

Yi Ting Tseng, Hsien Ting Lin, Yi Hao Lin, Jyh-Cheng Chen*

*此作品的通信作者

研究成果: Conference contribution同行評審

3 引文 斯高帕斯(Scopus)

摘要

In this paper, our team, SensingGO, presents a hierarchical classifier for Sussex-Huawei Locomotion-Transportation (SHL) recognition challenge. We first separate the original data into motorized activities and non-motorized activities in the first layer of the classifier by using accelerometer data. For the non-motorized activities, we calculate auto-correlation values with accelerometer data as input features. For the motorized activities, we take magnetometer and barometer with mean, maximum, standard deviation values as input features. Finally, we integrate the recognition results of each layer of the classifier, and the average F1-score is 50% to the validation data.

原文English
主出版物標題UbiComp/ISWC 2020 Adjunct - Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers
發行者Association for Computing Machinery
頁面346-350
頁數5
ISBN(電子)9781450380768
DOIs
出版狀態Published - 10 9月 2020
事件2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and 2020 ACM International Symposium on Wearable Computers, UbiComp/ISWC 2020 - Virtual, Online, Mexico
持續時間: 12 9月 202017 9月 2020

出版系列

名字UbiComp/ISWC 2020 Adjunct - Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers

Conference

Conference2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and 2020 ACM International Symposium on Wearable Computers, UbiComp/ISWC 2020
國家/地區Mexico
城市Virtual, Online
期間12/09/2017/09/20

指紋

深入研究「Hierarchical classification using ML/DL for sussex-huawei locomotion-transportation (SHL) recognition challenge」主題。共同形成了獨特的指紋。

引用此