Handling Multilayer Neural Network Nonlinear Equalizer Complexity and overfitting Challenges Using L1-Regularization for 112Gbps Optical Interconnects

Govind Sharan Yadav, Chun Yen Chuang, Kai Ming Feng*, Jyehong Chen, Young Kai Chen

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

We propose an L1-regularized multilayer neural network nonlinear equalizer (L1PML-NLE) for inter-data-center interconnects. Compared with conventional and sparse VNLE, the L1PML-NLE reduces 81% and 57.8% complexity with improved BER performance for 40-km 112-Gb/s PAM4 transmission.

原文English
主出版物標題Optoelectronics and Communications Conference, OECC 2021
發行者The Optical Society
ISBN(電子)9781557528209
出版狀態Published - 2021
事件2021 Opto-Electronics and Communications Conference, OECC 2021 - Hong Kong, 香港
持續時間: 3 7月 20217 7月 2021

出版系列

名字2021 Opto-Electronics and Communications Conference, OECC 2021

Conference

Conference2021 Opto-Electronics and Communications Conference, OECC 2021
國家/地區香港
城市Hong Kong
期間3/07/217/07/21

指紋

深入研究「Handling Multilayer Neural Network Nonlinear Equalizer Complexity and overfitting Challenges Using L1-Regularization for 112Gbps Optical Interconnects」主題。共同形成了獨特的指紋。

引用此