Gradient Normalization for Generative Adversarial Networks

Yi Lun Wu, Hong Han Shuai, Zhi Rui Tam, Hong Yu Chiu

研究成果: Conference contribution同行評審

48 引文 斯高帕斯(Scopus)

摘要

In this paper, we propose a novel normalization method called gradient normalization (GN) to tackle the training instability of Generative Adversarial Networks (GANs) caused by the sharp gradient space. Unlike existing work such as gradient penalty and spectral normalization, the proposed GN only imposes a hard 1-Lipschitz constraint on the discriminator function, which increases the capacity of the discriminator. Moreover, the proposed gradient normalization can be applied to different GAN architectures with little modification. Extensive experiments on four datasets show that GANs trained with gradient normalization outperform existing methods in terms of both Frechet Inception Distance and Inception Score.

原文English
主出版物標題Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
發行者Institute of Electrical and Electronics Engineers Inc.
頁面6353-6362
頁數10
ISBN(電子)9781665428125
DOIs
出版狀態Published - 2021
事件18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, 加拿大
持續時間: 11 10月 202117 10月 2021

出版系列

名字Proceedings of the IEEE International Conference on Computer Vision
ISSN(列印)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
國家/地區加拿大
城市Virtual, Online
期間11/10/2117/10/21

指紋

深入研究「Gradient Normalization for Generative Adversarial Networks」主題。共同形成了獨特的指紋。

引用此